Alberta Health Services. 2018. E. coli outbreak linked to certain pork products in Alberta declared over. https://www.albertahealthservices.ca/news/releases/2018/Page14457.aspx
Alperi, A. and Figueras, M.J. 2010. Human isolates of Aeromonas possess Shiga toxin genes (stx1 and stx2) highly similar to the most virulent gene variants of Escherichia coli. Clin. Microbiol. Infect. 16:1563–1567. DOI: 10.1111/j.1469-0691.2010.03203.x
Ashton, P.M., Perry, E., Ellis, R., et al. 2015. Insight into Shiga toxin genes encoded by Escherichia coli O157 from whole genome sequencing. PeerJ 3 (February): e739. DOI: 10.7717/peerj.739.
Atalla, H.N., Johnson, R., McEwen, S., et al. 2000. Use of a Shiga toxin (Stx)-enzyme-linked immunosorbent assay and immunoblot for detection and isolation of Stx-producing Escherichia coli from naturally contaminated beef. J. Food Prot. 63(9):1167-1172. DOI: 10.4315/0362-028X-63.9.1167
Babenko, D., and Toleman, M. 2016. In silico comparison of different PFGE and wgMLST. Int. J. Infect. Dis. 45(April):330. DOI: 10.1016/j.ijid.2016.02.716.
Bai, X., Fu, S., Zhang, J., et al. 2018. Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype. Sci. Rep. 8(1):6756. DOI: 10.1038/s41598-018-25233-x
Bai, X., Zhang, J., Ambikan, A., et al. 2019. Molecular Characterization and Comparative Genomics of Clinical Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains in Sweden. Sci. Rep. 9:5619. DOI: 10.1038/s41598-019-42122-z
Bayliss, L., Carr, R., Edeghere, O., et al. 2016. School outbreak of Escherichia coli O157 with high levels of transmission, Staffordshire, England, February 2012. J. Pub. Health (Oxf). 38(3):e247-e253.
Beutin, L., Montenegro, M.A., Orskov, I., et al. 1989. Close association of verocytotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli. J. Clin. Microbiol. 27(11):2559–2564.
Beutin, L. and Martin, A. 2012. Outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in Germany causes a paradigm shift with regard to human pathogenicity of STEC strains. J. Food Prot. 75(2):408-418. DOI: 10.4315/0362-028X.JFP-11-452.
Bielaszewska, M., Stowe, F., Fruth, A., et al. 2009. Shiga toxin, cytolethal distending toxin, and hemolysin repertoires in clinical Escherichia coli O91 isolates. J. Clin. Microbiol. 47(7):2061-2066. DOI: 10.1128/JCM.00201-09
Blais, B., Martinez, A., Gill, A., et al. 2014. Isolation and identification of priority verotoxigenic Escherichia coli (VTEC) in meat and vegetable products (MFLP-52). In: Compendium of Analytical Methods, Vol. 3, Laboratory Procedures of Microbiological Analysis of Foods. https://www.canada.ca/en/health-canada/services/food-nutrition/research-programs-analytical-methods/analytical-methods/compendium-methods.html
Blais, B.W., Tapp, K., Dixon, M. and Carrillo, C.D. 2019. Genomically informed strain-specific recovery of Shiga toxin-producing Escherichia coli during food-borne illness outbreak investigations. J. Food Prot. 82(1):39-44. DOI: 10.4315/0362-028X.JFP-18-340
Blais, B. 2017. "Waiter, there's a DNA thread in my soup!" Canadian Safety and Security Program Connect Quarterly Newsletter (Issue 12). Available at: http://science.gc.ca/eic/site/063.nsf/eng/h_97411.html#4
Boerlin, P., McEwen, S.A., Boerlin-Petzold, F., et al. 1999. Associations between Virulence Factors of Shiga Toxin-Producing Escherichia coli and Disease in Humans. J. Clin. Microbiol. 37(3):497-503.
Boisen, N., Hansen, A.M., Melton-Celsa, A.R., et al. 2014. The presence of the pAA plasmid in the German O104:H4 Shiga toxin type 2a (Stx2a)-producing enteroaggregative Escherichia coli strain promotes the translocation of Stx2a across an epithelial cell monolayer. J. Infect. Dis. 210(12):1909-1919. DOI: 10.1093/infdis/jiu399.\
Boisen, N., Melton-Celsa, F., Scheutz, A.R., et al. 2015. Shiga toxin 2a and enteroaggregative Escherichia coli – a deadly combination. Gut Microbes. 6(4):272–278. DOI: 10.1080/19490976.2015.1054591
Brooks, J.T., Sowers, E.G., Wells, J.G., et al. 2005. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J. Infect. Dis. 192 (8):1422–1429.
Buvens, G., Possé, B., De Schrijver, et al. 2011. Virulence profiling and quantification of verocytotoxin-producing Escherichia coli O145:H28 and O26:H11 isolated during an ice cream-related hemolytic uremic syndrome outbreak. Foodborne Pathog. Dis. 8(3):421–426. DOI: 10.1089/fpd.2010.0693
Buvens, G., Gheldre, Y.D., Dediste, A., et al. 2012. Incidence and virulence determinants of verocytotoxin-producing Escherichia coli infections in the Brussels-Capital Region, Belgium, in 2008-2010. J.Clin. Microbiol. 50(4):1336–1345. DOI: 10.1128/JCM.05317-11
CAC 2013. Codex Alimentarious Commission, Principles and Guidelines for National Food Control Systems CAC/GL 82-2013.
Carrillo, C.D., Koziol, A.G., Mathews, A., et al. 2016. Comparative evaluation of genomic and laboratory approaches for determination of Shiga Toxin subtypes in Escherichia coli. J. Food Prot. 79(12):2078-2085. DOI: 10.4315/0362-028X.JFP-16-228
Carrillo, C.D., Koziol, A., Vary, N. and Blais, B.W. (2019) Applications of genomics in regulatory food safety testing in Canada, in: New Insight into Salmonella, Listeria and E. coli Infections" (M.T. Mascellino, ed.), InTech Open Science Publishers.DOI: http://dx.doi.org/10.5772/intechopen.86063
Catford, A., Kouamé, V., Martinez-Perez, A., Gill, A., et al. 2014. Risk Profile on non-O157 verotoxin-producing Escherichia coli in produce, beef, milk and dairy products in Canada. Int. Food Risk Analysis J. 4:32, DOI: 10.5772/59208
CDC. 2018. https://www.cdc.gov/ecoli/2018/o157h7-04-18/advice-consumers.html
CDC FoodNet 2017. Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet 2015 Surveillance Report (Final Data). Atlanta, Georgia: U.S. Department of Health and Human Services. https://www.cdc.gov/foodnet/reports/annual-reports-2015.html
CDC FoodNet Fast, 2018. https://wwwn.cdc.gov/foodnetfast/
CFIA Testing. http://www.inspection.gc.ca/food/chemical-residues-microbiology/microbiology/eng/1324284849823/1324285064868
Chui, L., Christianson, S., Alexander, D.C., et al. 2018. CPHLN recommendations for the laboratory detection of Shiga toxin-producing Escherichia coli (O157 and nonO157). Can. Commun. Dis. Rep. 44(11):304–307. DOI: 10.14745/ccdr.v44i11a06
Cointe, A., Birgy, A., Mariani-Kurkdjian, P., et al. 2018. Emerging multidrug-resistant hybrid pathotype Shiga Toxin-Producing Escherichia coli O80 and related strains of clonal complex 165, Europe. Emerg. Infect. Dis. 24(12):2262-2269. DOI: 10.3201/eid2412.180272
Colello, R., Vélez, M.V., González, J., et al. 2018. First report of the distribution of Locus of Adhesion and Autoaggregation (LAA) pathogenicity island in LEE-negative Shiga toxin-producing Escherichia coli isolates from Argentina. Microb. Pathog. 123:259-263. DOI: 10.1016/j.micpath.2018.07.011
Cowden, J.M., Ahmed, S., Donaghy, M., and Riley, A. 2001. Epidemiological investigation of the Central Scotland outbreak of Escherichia coli O157 infection, November to December 1996. Epidemiol. Infect. 236(3):335-341 DOI: 10.1017/S0950268801005520
Crowe, S.J., Bottichio, L., Shade, L.N., et al. 2017. Shiga toxin-producing E. coli infections associated with flour. N. Engl. J. Med. 377(21): 2036-2043. DOI: 10.1056/NEJMoa1615910
Croxen, M.A., Law, R.J., Scholz, R., et. al. 2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 26(4):822-880. DOI: 10.1128/CMR.00022-13
da Silva Santos, A.C., Gomes Romeisro, F., Yukie Sassaki, L., and Rodrigues, J. 2015. Escherichia coli from Crohn's disease patient displays virulence features of enteroinvasive (EIEC), enterohemorragic (EHEC), and enteroaggregative (EAEC) pathotypes. Gut Pathog. 7(1):2 doi 10.1186/s13099-015-0050-8
Dallman, T., Smith, G.P., O'Brien, B., et al. 2012. Characterization of a verocytotoxin-producing enteroaggregative Escherichia coli serogroup O111:H21 strain associated with a household outbreak in Northern Ireland. J. Clin. Microbiol. 50(12): 4116-4119. DOI: 10.1128/JCM.02047-12
Davidson, G.R., Frelka, J.C., Yang, M., et al. 2015. Prevalence of Escherichia coli O157:H7 and Salmonella on Inshell California Walnuts. J. Food Prot. 78(8):1547-53. DOI: 10.4315/0362-028X.JFP-15-001
De Rauw, K., Detemmerman, L., Breynaert, J., and Piérard, D. 2016. Detection of Shiga toxin-producing and other diarrheagenic Escherichia coli by the BioFire FilmArray® Gastrointestinal Panel in human fecal samples. Eur. J. Clin. Microbiol. Infect. Dis. 35(9):1479-1486. DOI: 10.1007/s10096-016-2688-7
DebRoy, C., Fratamico, P. M., Yan, X., et al. 2016. Comparison of O-antigen gene clusters of all O-serogroups of Escherichia coli and proposal for adopting a new nomenclature for O-typing. PLoS ONE 11:e0147434. DOI: 10.1371/journal.pone.0147434
Donohue-Rolfe, A., Kondova, I., Oswald, S., et al. 2000. Escherichia coli O157:H7 strains that express shiga toxin (stx) 2 alone are more neurotropic for gnotobiotic piglets than are isotypes producing only stx1 or both stx1 and stx2. J. Infect. Dis. 181(5):1825–1829 DOI: 10.1086/315421
Doyle, M.P., and Schoeni, J.L. 1984. Survival and growth characteristics of Escherichia coli associated with hemorrhagic colitis. Appl. Environ. Microbiol. 48(4):855-856
EFSA, 2015. Public health risks associated with Enteroaggregative Escherichia coli (EAEC) as a food-borne pathogen . Panel on Biological Hazards. 2015. EFSA Journal. 13(12): Article UNSP 4330 DOI: 10.2903/j.efsa.2015.4330
Ekong, P.S., Sanderson, M.W., and Cernicchiaro, N. 2015. Prevalence and concentration of Escherichia coli O157 in different seasons and cattle types processed in North America: A systematic review and meta-analysis of published research. Prev. Vet. Med. 121(1-2):74-85. DOI: 10.1016/j.prevetmed.2015.06.019
Ercoli, L., Farneti, S., Ranucci, D., et al. 2015. Role of verocytotoxigenic Escherichia coli in the swine production chain. Ital. J. Food Saf. 4(2):5156. DOI: 10.4081/ijfs.2015.5156
Ethelberg, S., Olsen, K.E.P., Scheutz, F., et al. 2004. Virulence factors for hemolytic uraemic syndrome, Denmark. J. Emerg. Infect. Dis. 10(5):842–847. DOI: 10.3201/eid1005.030576
FAO/WHO STEC Expert Group. 2019. Hazard Identification and Characterization: criteria for categorizing Shiga Toxin–producing Escherichia coli on a risk basis. J. Food Prot. 82(1):7-21. DOI: 10.4315/0362-028X.JFP-18-291
Farrokh, C., Jordan, K., Auvray, F., et al. 2013. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int J Food Microbiol. 162(2): 190-212. DOI: 10.1016/j.ijfoodmicro.2012.08.008
Fasel, D., Mellmann, A., Cernela, N., et al. 2014. Hemolytic uraemic syndrome in a 65-Year-old male linked to a very unusual type of stx2e and eae-harboring O51:H49 Shiga toxin-producing Escherichia coli. J. Clin. Microbiol. 52(4):1301–1303. DOI: 10.1128/JCM.03459-13
Feng, P.C., Jinneman, K., Scheutz, F., and Monday, S.R. 2011. Specificity of PCR and serological assays in the detection of Escherichia coli Shiga toxin subtypes. Appl. Environ. Microbiol. 77(18):6699-6702. DOI: 10.1128/AEM.00370-11
FoodNet Canada. https://www.canada.ca/en/public-health/services/surveillance/foodnet-canada.html
FoodNet Canada Publications. https://www.canada.ca/en/public-health/services/surveillance/foodnet-canada/publications.html
Frank, C., Werber, D., Cramer, J.P., et al. 2011. Epidemic profile of Shiga toxin-producing Escherichia coli O104:H4 outbreak in Germany. N. Eng. J. Med. 365(19):1771-1780. DOI:10.1056/NEJMoa1106483
Franz, E., van Hoek, A.H., Wuite, M., et al. 2015 Molecular hazard identification of non-O157 Shiga Toxin-Producing Escherichia coli (STEC). PLoS ONE 10(3): e0120353. https://doi.org/10.1371/journal.pone.0120353
Fratamico, P.M., DebRoy, C., Liu, Y., et al. 2016. Advances of molecular serotyping and subtyping of Escherichia coli. Front Microbiol. 7:644. DOI: 10.3389/fmicb.2016.00644
Friedrich, A.W., Bielaszewska, M., Zhang, W.-L., et al. 2002. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J. Infect. Dis. 185(11):74–84. DOI: 10.1086/338115
Friesema, I., van der Zwaluw, K., Schuurman, T., et al. 2014. Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E. coli (STEC) infections in the Netherlands, January 2008 to December 2011. Euro Surveill. 19(17):26-32. Available online: http:// www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20787
Friesema, I.H., Keijzer-Veen, M.G., Koppejan, M., et al.2015. Hemolytic uremic syndrome associated with Escherichia coli O8:H19 and Shiga toxin 2f gene. Emerg. Infect. Dis. 21(1): 168-169. DOI: 10.3201/eid2101.140515
Fuller, C.A., Pellino, C.A., Flagler, M.J., et al. 2011. Shiga toxin subtypes display dramatic differences in potency. Infect. Immun. 79(3):1329–1337. DOI:10.1128/IAI.01182-10
Furukawa, I., Suzuki, M., Masaoka, T., et al. 2018. Outbreak of Enterohemorrhagic Escherichia coli O157:H7 Infection Associated with Minced Meat Cutlets Consumption in Kanagawa, Japan. Jpn. J. Infect Dis. 71(6):436-441. doi: 10.7883/yoken.JJID.2017.495
Garg, A.X., Suri, R.S., Barrowman, N., et al. 2003. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA. 290(10):1360-1370
Garg, A.X., Salvadori, M., Moist, L.M., et al. 2009. Renal prognosis of toxigenic Escherichia coli infection. Kidney Int. 75(S112):S38-S41. DOI: 10.1038/ki.2008.617
Gaytán, M.O., Martínez-Santos, V.I., Soto, E., and González-Pedrajo, B. 2016. Type three secretion system in attaching and effacing pathogens. Front. Cell. Infect. Microbiol. 6:129. DOI: 10.3389/fcimb.2016.00129
Gill, A., Martinez-Perez, A., McIlwham, S. and B. Blais. 2012. Development of a method for the detection of verotoxin producing Escherichia coli in food. J Food Prot. 75(5):827-837. DOI: 10.4315/0362-028X.JFP-11-395
Gill, A., Huszczynski, G., Gauthier, M., and Blais, B. 2014. Evaluation of eight agar media for the isolation of Shiga Toxin–Producing Escherichia coli. J. Microbiol. Methods. 96:6-11. DOI: 10.1016/j.mimet.2013.10.022
Gill, A. and Oudit, D. 2015. Enumeration of Escherichia coli O157 in outbreak-associated Gouda cheese made with raw milk. J. Food Prot. 78(9):1733-1737. DOI: 10.4315/0362-028X.JFP-15-036
Gill, A. and Huszczynski, G. 2016. Enumeration of Escherichia coli O157:H7 in outbreak-associated beef patties. J. Food Prot. 79(7):1266-8. DOI: 10.4315/0362-028X.JFP-15-521
Gill A., Carrillo, C., Hadley, M., et al. 2019a. Bacteriological analysis of wheat flour associated with an outbreak of Shiga toxin-producing Escherichia coli O121. Food Microbiology. 82:474-481. DOI: 10.1016/j.fm.2019.03.023
Gill, A., Tamber, S., and Yang, X. 2019b. Relative response of populations of Escherichia coli and Salmonella enterica to exposure to thermal, alkaline and acidic treatments. Int. J. Food Microbiol. 293:94–101. DOI: 10.1016/j.ijfoodmicro.2019.01.007
Gilmour, M.W., Tabor, H., Wang, G., et al. 2007a. Isolation and genetic characterization of a coinfection of non-O157 Shiga Toxin-Producing Escherichia coli. J. Clin. Microbiol. 45 (11): 3771–3773. DOI: 10.1128/JCM.01125-07.
Gilmour, M.W., Olson, A.B., Andrysiak, A.K., et al. 2007b. Sequence-based typing of genetic targets encoded outside of the O-antigen gene cluster is indicative of Shiga toxin-producing Escherichia coli serogroup lineages. J. Med. Microbiol. 56(Pt 5):620-628.
Girardeau, J.P., Bertin, Y., and Martin, C. 2009. Genomic analysis of the PAI ICL3 locus in pathogenic LEE-negative Shiga toxin-producing Escherichia coli and Citrobacter rodentium. Microbiology. 155(4):1016-1027. DOI: 10.1099/mic.0.026807-0
Gould, L.H., Mody, R.K., Ong, K.L., et al. 2013. Increased recognition of non-O157 Shiga toxin-producing Escherichia coli infections in the United States during 2000–2010: epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog. Dis. 10(5):453–460. DOI:10.1089/fpd.2012.1401
Government of Canada. 2018. National Enteric Surveillance Program Annual Summary 2016: Public Health Agency of Canada, Guelph. Available at http://publications.gc.ca/site/eng/432850/publication.html
Grad, Y.H., Lipsitch, M., Feldgarden, M. et al. 2012. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. PNAS USA. 109(8):3065–3070. DOI: 10.1073/pnas.1121491109.
Grande, L., Michelacci, V., Bondì, R., et al. 2016. Whole-genome characterization and strain comparison of VT2f-producing Escherichia coli causing hemolytic uraemic syndrome. Emerg. Infect. Dis. 22(12):2078–2086. DOI:10.3201/eid2212.160017
Grotiuz, G., Sirok, A., Gadea, P., et al. 2006. Shiga toxin 2-producing i associated with a case of bloody diarrhea. J. Clin. Microbiol. 44(10):3838 –3841. DOI: 10.1128/JCM.00407-06
Hallewell, J., Alexander, T., Reuter, T., and Stanford, K. 2017. Limitations of immunomagnetic separation for detection of the top seven serogroups of Shiga toxin-producing Escherichia coli. J. Food Prot. 80(4):598-603. DOI: 10.4315-0362-028X.JFP-16-427.
Hara-Kudo, Y. and Takatori, K. 2011. Contamination level and ingestion dose of foodborne pathogens associated with infections. Epidemiol. Infect. 139(10):1505–1510. DOI: 10.1017/S095026881000292X.
Hatchette, T.F. and Farina, D. 2011. Infectious diarrhea: when to test and when to treat. Can. Med. Assoc. J. 183(3):339-344. DOI: 10.1503/cmaj.091495
Health Canada 2018. The Compendium of Analytical Methods. 2018; Available from: https://www.canada.ca/en/health-canada/services/food-nutrition/research-programs-analytical-methods/analytical-methods/compendium-methods.html.
Hebbelstrup Jensen, B., Olsen, K.E., Struve, C., et al. 2014. Epidemiology and clinical manifestations of enteroaggregative Escherichia coli. Clin. Microbiol. Rev. 27(3):614-30. DOI: 10.1128/CMR.00112-13
Hofer, E., Cernela, N. and Stephan, R. 2012. Shiga toxin subtypes associated with Shiga toxin-producing Escherichia coli strains isolated from red deer, roe deer, chamois, and ibex. Food Path. Dis. 9(9):792–795. DOI: 10.1089/fpd.2012.1156
Honish, L., Punja, N., Nunn, S., et al., 2017. Escherichia coli O157:H7 Infections Associated with Contaminated Pork Products — Alberta, Canada, July–October 2014. MMWR Morb. Mortal. Wkly. Rep. 65(52):1477-1481 DOI: 10.15585/mmwr.mm6552a5
Iguchi, A., Iyoda, S., Seto, K., et al. 2015. Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J. Clin. Microbiol. 53(8):2427–2432. DOI: 10.1128/JCM.00321-15
Ingle, D.J., Valcanis, M., Kuzevski, A., et al. 2016. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microbial Genomics 2 (7). DOI: 10.1099/mgen.0.000064.
International Standards Organisation (ISO). 2012. Microbiology of food and animal feed — Real-time polymerase chain reaction (PCR)-based method for the detection of food-borne pathogens — Horizontal method for the detection of Shiga toxin-producing Escherichia coli (STEC) and the determination of O157, O111, O26, O103 and O145 serogroups. ISO/TS 13136:2012. Available at: https://www.iso.org/standard/53328.html
Jaakkonen, A., Salmenlinna, S, Rimhanen-Finne, R., et al. 2017. Severe Outbreak of Sorbitol-Fermenting Escherichia coli O157 via Unpasteurized Milk and Farm Visits, Finland 2012. Zoonoses Public Health. 64(6):468-475. DOI: 10.1111/zph.12327.
Jang, J., Hu, H.G., Sadowsky, M.J., et al. 2017. Environmental Escherichia coli: ecology and public health implications – a review. J. App. Microbiol. 123(3):570-581. DOI: 10.1111/jam.13468
Jaureguy, F., Landraud, L., Passet, V. et al. 2008. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics 9 (1): 560. DOI: 10.1186/1471-2164-9-560.
Joensen, K.G., Scheutz, F., Lund, O., et al. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52(5):1501–1510. DOI: 10.1128/JCM.03617-13.
Joensen, K.G., Tetzschner, A.M., Iguchi, A., et al. 2015. Rapid and easy in silico serotyping of Escherichia coli using whole genome sequencing (WGS) data. J. Clin. Microbiol. 53(8):2410-2426. DOI: 10.1128/JCM.00008-15
Jolley, K.A., Bliss, C.M., Bennett, J.S., et al. 2012. Ribosomal multilocus sequence typing: Universal characterization of bacteria from domain to strain. Microbiology (Reading) 158 (Pt 4): 1005–1015. DOI: 10.1099/mic.0.055459-0
Kanayama, A., Yahata., Y., Arima, Y., et al. 2015. Enterohemorrhagic Escherichia coli outbreaks related to childcare facilities in Japan, 2010–2013. BMC Infect. Dis. 15:539. DOI: 10.1186/s12879-015-1259-3
Karmali, M.A., Mascarenhas, M., Shen, S., et al. 2003. Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemics and/or serious disease. J. Clin. Microbiol. 41:4930–4940.
Karch, H., Schubert, S., Zhang, D., et al. 1999. A genomic island, termed high-pathogenicity island, is present in certain non-O157 Shiga toxin-producing Escherichia coli clonal lineages. Infect Immun. 67(11):5994–6001.
Karmali, M. 2018. Factors in the emergence of serious human infections associated with highly pathogenic strains of shiga toxin-producing Escherichia coli. Int. J. of Med. Microbiol. 308:1067-1072.
Karpman, D. and Ståhl, A.L. 2014. Enterohemorrhagic Escherichia coli pathogenesis and the host response. Microbiol. Spectr. 2(5). DOI: 10.1128/microbiolspec.EHEC-0009-2013
Kauffman F. 1947. The serology of the coli group. J. Immunol. 57(1):71-100.
Khaitan, A., Jandhyala, D.M., Thorpe, C.M., et al. 2007. The operon encoding SubAB, a novel cytotoxin, is present in shiga toxin-producing Escherichia coli isolates from the United States. J. Clin. Microbiol. 45(4):1374-1375 DOI: 10.1128/JCM.00076-07
Kimmitt, P.T., Harwood, C.R. and Barer, M.R. 2000. Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg. Infect. Dis. 6(5):458–465.
Knowles, M., Stinson, S., Lambert, D., et al. 2016 Genomic tools for customized recovery and detection of food-borne Shiga-toxigenic Escherichia coli. J. Food Prot. 79:2066-2077. DOI: 10.4315/0362-028X.JFP-16-220
Konowalchuk, J., Speirs, J.I. and Stavric, S. 1977. Vero response to a cytotoxin of Escherichia coli. Infect. Immun. 18:775-779.
Kraft, A.L., Lacher, D.W., Shelver, W.L., et al. 2017. Comparison of immunomagnetic separation beads for detection of six non-O157 Shiga toxin-producing Escherichia coli serogroups in different matrices. Lett. Appl. Microbiol. 65:213-219.
Krüger, A. and Lucchesi, P.M. 2015. Shiga toxins and stx phages: highly diverse entities. Microbiology. 161(Pt 3):451-462. DOI: 10.1099/mic.0.000003
Kundu, D., Gill, A., Lui, C., et al. 2014. Use of low dose e-beam irradiation to reduce E. coli O157:H7, non-O157 (VTEC) E. coli and Salmonella viability on meat surfaces. Meat Sci. 96:413-418. DOI: 10.1016/j.meatsci.2013.07.034
Lacher, D.W., Gangiredla, J., Patel, I., et al., 2016. Use of the Escherichia coli identification microarray for characterizing the health risks of Shiga toxin-producing Escherichia coli isolated from foods. J. Food Prot. 79(10):1656–1662. DOI: 10.4315/0362-028X.JFP-16-176
Lambert, D., Carrillo, C.D., Koziol, A., et al., 2015. GeneSippr: a Rapid Whole-Genome Approach for the Identification and Characterization of Foodborne Pathogens Such as Priority Shiga Toxigenic Escherichia coli. PLOS One 10(4): e0122928. DOI: 10.1371/journal.pone.0122928
Lambert, D., Pightling, A., Griffiths, E., et al. 2017. Baseline practices for the application of genomic data supporting regulatory food safety. J. AOAC Int. 100:1-11.
Le, K.K., Whiteside, M.D., Hopkins, J.E. et al. 2018. Spfy: An integrated graph database for real-time prediction of bacterial phenotypes and downstream comparative analyses. Database 2018 (January). DOI: 10.1093/database/bay086.
LeClerc, J.E., Li, B., Payne W.L., and Cebula, T.A. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens." Science 274 (5290): 1208–1211. DOI: 10.1126/science.274.5290.1208.
Leonard, S.R., Mammel, M.K., Rasko, D.A., and Lacher, D.W. 2016. Hybrid Shiga toxin-producing and enterotoxigenic Escherichia sp. cryptic lineage 1 strain 7v harbors a hybrid plasmid. Appl. Environ. Microbiol. 82(14):4309-4319. DOI: 10.1128/AEM.01129-16
Levine, M.M. 1987. Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J. Infect. Dis. 155:377–389.
Lienemann, T., Salo, E., Rimhanen-Finne, R., et al. 2012. Shiga toxin–producing Escherichia coli serotype O78:H(-) in family, Finland, 2009. Emerg. Infect. Dis. 18:577–581. DOI: 10.3201/eid1804.111310
Liu, Y., Gill, A., McMullen, L., and Gänzle. 2015. Variation in heat and pressure resistance of verotoxigenic and nontoxigenic Escherichia coli. J. Food Prot. 78(1):111–120. DOI: 10.4315/0362-028X.JFP-14-267
Low, A.J., Koziol, A.G., Manninger, P., et al. 2019. ConFindr: Rapid detection of intraspecies and cross-species contamination in bacterial whole-genome sequence data. Peer. J. Preprints. https://peerj.com/preprints/27499.pdf
Maiden, M.C.J., van Rensburg, M.J.J., Bray, J.E. et al. 2013. MLST revisited: The gene-by-gene approach to bacterial genomics. Nat. Rev. Microbiol. 11(10): 728–736. DOI: 10.1038/nrmicro3093.
March, S.B., and Ratnam, S. 1986. Sorbitol-MacConkey medium for detection of Escherichia coli O157:H7 associated with hemorrhagic colitis. J. Clin. Microbiol. 23:869-872.
Marejková, M., Bláhová, K., Janda, J., et al. 2013. Enterohemorrhagic Escherichia coli as causes of hemolytic uraemic syndrome in the Czech Republic. PLOSOne. 8(9): e73927. DOI: 10.1371/journal.pone.0073927
Mellmann, A., Bielaszewska, M., Köck, R.A., et al. 2008. Analysis of collection of hemolytic uraemic syndrome-associated enterohemorrhagic Escherichia coli. Emerg. Infect. Dis. 14(8):1287–1290. DOI: 10.3201/eid1408.071082
Melton-Celsa, A.R. 2014. Shiga toxin (Stx) classification, structure, and function. Microbiol. Spectrum. 2(3): EHEC-20024-2013
Meng, Q., Bai, X., Zhao, A. et al. 2014. Characterization of Shiga toxin-producing Escherichia coli isolated from healthy pigs in China. BMC Microbiol. 14:5. DOI: 10.1186/1471-2180-14-5
Michelacci, V., Tozzoli, R., Caprioli, A., et al. 2013. A new pathogenicity island carrying an allelic variant of the Subtilase cytotoxin is common among Shiga toxin producing Escherichia coli of human and ovine origin. Clin. Microbiol. Infect. 19:E149–E156. DOI: 10.1111/1469-0691.12122
Michelacci, V., Maugliani, A., Tozzoli, R., et al. 2018. Characterization of a novel plasmid encoding F4-like fimbriae present in a Shiga-toxin producing enterotoxigenic Escherichia coli isolated during the investigation on a case of hemolytic-uremic syndrome. Int. J. Med. Microbiol. 308(7):947-955. DOI: 10.1016/j.ijmm.2018.07.002
Michino, H., Araki, K., Minami, S., et al. 1999. Massive Outbreak of Escherichia coli O157: H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am. J. Epidemiol. 150(8):787-796 DOI: 10.1093/oxfordjournals.aje.a010082
Montero, D.A., Velasco, J., Del, C.F., et al. 2017. Locus of Adhesion and Autoaggregation (LAA), a pathogenicity island present in emerging Shiga Toxin-producing Escherichia coli strains. Science Report. 7:7011. DOI:10.1038/s41598-017-06999-y
Montero, D.A., Del Canto, F., Velasco, J., et al. 2019. Cumulative acquisition of pathogenicity islands has shaped virulence potential and contributed to the emergence of LEE-negative Shiga toxin-producing Escherichia coli strains, Emerg. Microb. Infect. 8(1):486-502. DOI: 10.1080/22221751.2019.1595985
Mora, A., López, C., Dhabi, G., et al. 2012. Seropathotypes, phylogroups, stx subtypes, and intimin types of wildlife carried, Shiga toxin-producing Escherichia coli strains with the same characteristics as human-pathogenic isolates. App. Environ. Microbiol. 78(8):2578–2585. DOI: 10.1128/AEM.07520-11
Morabito, S., Karch, H., Mariani-Kurkdjian, P., et al. 1998. Enteroaggregative, Shiga toxin-producing Escherichia coli O111:H2 associated with an outbreak of hemolytic-uremic syndrome. J. Clin. Microbiol. 36:840-842.
Morita-Ishihara, T., Iyoda, S., Iguchi, A., and Ohnishi, M. 2016. Secondary Shiga Toxin-Producing Escherichia coli Infection, Japan, 2010-2012. Emerg. Infect. Dis. 22(12):2181-2184. DOI: 10.3201/eid2212.160783
Morton, V., Cheng, J.M., Sharma, D., and Kearney, A. 2017. Notes from the field: an outbreak of shiga toxin producing Escherichia coli O121 infections associated with flour – Canada, 2016-2017. MMWR Morb. Mortal. Wkly. Rep. 66:705-706.
Murinda, S.E., Batson, S.D., Nguyen, L.T., et al. 2004. Phenotypic and genetic markers for serotype-specific detection of Shiga toxin-producing Escherichia coli O26 strains from North America. Foodborne Pathog. Dis. 1(2):125-35. DOI: 10.1089/153531404323143657
Nadon, C. Van Walle, I., Gerner-Smidt, P. et al. 2017. PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance. Eurosurveillance 22 (23): pii=30544. DOI: 10.2807/1560-7917.ES.2017.22.23.30544.
Naseer, U., Løbersli, I., Hindrum, M., et al. 2017. Virulence factors of Shiga toxin-producing Escherichia coli and the risk of developing haemolytic uraemic syndrome in Norway, 1992-2013. Eur. J. Clin. Microbiol. Infect. Dis. 36(9):1613-1620. DOI: 10.1007/s10096-017-2974-z
Nataro, J.P. and Kaper, J.B. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11:142–201.
National Advisory Committee on Microbiological Criteria for Foods (NACMCF). 2019. Response to questions posed by the Food and Drug administration regarding virulence factors and attributes that define foodborne Shiga toxin-producing Escherichia coli (STEC) as severe human pathogens. J. Food Prot. .10:724-767. DOI: 10.4315/0362-028X.JFP-18-479
NESP. National Enteric Surveillance Program (NESP). https://www.canada.ca/en/public-health/programs/national-enteric-surveillance-program.html
NESP Reports. https://www.canada.ca/en/public-health/services/surveillance/foodnet-canada/publications.html
Nüesch-Inderbinen, M., Morach, M., Cernela, N., et al. 2018. Serotypes and virulence profiles of Shiga toxin-producing Escherichia coli strains isolated during 2017 from human infections in Switzerland. Int. J. Med. Microbiol. 308(7):933-939. DOI: 10.1016/j.ijmm.2018.06.011
Nyholm, O., Halkilahti, J., Wiklund, G., et al. 2015 Comparative genomics and characterization of hybrid Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC) strains. PLOS ONE 10(8): e0135936. DOI: 10.1371/journal.pone.0135936
O'Brien, A.D., and La Veck, G.F. 1983. Purification and characterization of a Shigella dysenteria 1-like toxin produced by Escherichia coli. Infect. Immun. 40:675–683.
Oliver, S.P., Jayarao, B.M., and Almeida, R.A. 2005. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog. Dis. 2(2):115–129. DOI: 10.1089/fpd.2005.2.115
Ooka, T., Seto, K., Kawano, K., et al. 2012. Clinical significance of Escherichia albertii. Emerg. Infect. Dis. 18:488 –492. DOI: 10.3201/eid1803.111401
Ørskov, I., Ørskov, F., Jann, B., and Jann, K. 1977. Serology, chemistry, and genetics of O and K antigens of Escherichia coli. Bacteriol. Rev. 41:667–710.
Ostroff, S.M., Tarr, P.I., Neill, M.A., et al. 1989. Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J. Infect. Dis. 160:994–998.
Paton, A.W. and Paton, J.C. 1996. Enterobacter cloacae producing a Shiga-like toxin II-related cytotoxin associated with a case of hemolytic-uremic syndrome. J. Clin. Microbiol. 34:463–465.
Paton, A.W., Ratcliff, R.M., Doyle, R.M., et al. 1996. Molecular microbiological investigation of an outbreak of hemolytic-uremic syndrome caused by dry fermented sausage contaminated with Shiga-like toxin-producing Escherichia coli. J. Clin. Microbiol. 34(7):1622-1627.
Paton, A.W., Srimanote, P., Woodrow, M.C. and Paton, J.C. 2001. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect. Immun. 69(11):6999–7009. DOI: 10.1128/IAI.69.11.6999-7009.2001
Paton, A.W., Srimanote, P., Talbot, U.M., et al. 2004. A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J. Exp. Med. 200(1):35-46.
Persad, A.K. and LeJeune, J.T. 2014. Animal Reservoirs of Shiga Toxin-Producing Escherichia coli. Microbiol. Spect. 2(4):EHEC-0027-2014. DOI:10.1128/microbiolspec.EHEC-0027-2014
Persson, S., Olsen, K.E.P., Ethelberg, S. and Scheutz, F. 2007. Subtyping method for Escherichia coli Shiga toxin (Verocytotoxin) 2 variants and correlations to clinical manifestations. J. Clin. Microbiol. 45(6):2020–2024. DOI: 10.1128/JCM.02591-06
Petkau, A., Mabon, P., Sieffert, C., et al. 2017. SNVPhyl: A single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology. Microbial Genomics 3 (6): e000116. DOI: 10.1099/mgen.0.000116.
Pollari, F., Christidis, T., Pintar, K.D.M., et al. 2017. Evidence for the benefits of food chain interventions on E. coli O157:H7/NM prevalence in retail ground beef and human disease incidence: A success story. Can. J. of Pub. Health. 108(1):e71–e78 DOI: 10.17269/CJPH.108.5655
Prager, R., Fruth, A., Busch, U. and Tietze, E. 2011. Comparative analysis of virulence genes, genetic diversity and phylogeny of Shiga toxin 2g and heat-stable enterotoxin STIa encoding Escherichia coli isolates from humans, animals, and environmental sources. Int. J. Med. Microbiol. 301(3):181–191. DOI: 10.1016/j.ijmm.2010.06.003
Prager, R., Lang, C., Aurass, P., et al. 2014. Two novel EHEC/EAEC hybrid strains isolated from human infections. PLOS ONE 9(4): e95379. DOI: 10.1371/journal.pone.0095379
Probert, W.S., McQuaid, C., and Schrader, K. 2014. Isolation and identification of an Enterobacter cloacae strain producing a novel subtype of Shiga toxin type 1. J. Clin. Microbiol. 52(7):2346-2351. DOI: 10.1128/JCM.00338-14
PulseNet. https://www.canada.ca/en/public-health/programs/pulsenet-canada.html
Rasko, D.A., Webster, D.R., Sahl, J.W., et al. 2011. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. New Engl. J. Med. 365(8):709-717.
Read, S.C., Gyles, C.L., Clarke, R.C., et al. 1990. Prevalence of verocytotoxigenic Escherichia coli in ground beef, pork, and chicken in southwestern Ontario. Epidem. Infect. 105:11–20.
Ribot, E.M., and Hise, K.B. 2016. Future challenges for tracking foodborne diseases: PulseNet, a 20-year-old us surveillance system for foodborne diseases, is expanding both globally and technologically. EMBO Reports 17 (11): 1499–1505. DOI: 10.15252/embr.201643128.
Safe Cooking Temperatures. https://www.canada.ca/en/health-canada/services/general-food-safety-tips/safe-internal-cooking-temperatures.html
Santos, A.S. and Finlay, B.B. 2015. Bringing down the host: enteropathogenic and enterohaemorrhagic Escherichia coli effectormediated subversion of host innate immune pathways. Cell. Microbiol. 17(3):318-332.
Scavia, G., Morabito, S., Tozzoli, R., et al. 2011. Similarity of Shiga toxin–producing Escherichia coli O104:H4 strains from Italy and Germany. Emerg. Infect. Dis. 17(10):1957-1958. DOI: 10.3201/eid1710.111072
Scheutz, F., and Stockbine, NA. 2005. Genus 1. Escherichia. In: Brenner, D.J., Krieg, N.R., Staley, J.T., eds. Bergey's Manual of Systematic Bacteriology, 2nd ed, Vol 2. Michigan, Springer and Bergey's Manual Trust. pg 607–623.
Scheutz, F., Teel, L.D., Beutin, L. et al 2012. Multicenter evaluation of a sequence-based protocol for subtyping shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol. 50(9):2951-2963. DOI: 10.1128/JCM.00860-12
Scheutz F. 2014. Taxonomy meets public health: the case of Shiga toxin-producing Escherichia coli. Microbiol Spectrum 2(4):EHEC-0019-2013. DOI:10.1128/microbiolspec.EHEC-0019-2013
Schmidt, H., Montag, M., Bockemühl, J., et al. 1993. Shiga-like toxin II-related cytotoxins in Citrobacter freundii strains from humans and beef samples. Infect. Immun. 61:534 –543
Schmidt, H., Scheef, J., Morabito, S., et al. 2000. A new Shiga toxin 2 variant (stx2f) from Escherichia coli isolated from pigeons. App. Environ. Microbiol. 66(3):1205–1208. DOI: 10.1128/AEM.66.3.1205-1208.2000
Schmidt, H., Zhang, W-L., Hemmrich, U., et al. 2001. Identification and characterization of a novel genomic island integrated at selC in Locus of Enterocyte Effacement-negative, Shiga toxin-producing Escherichia coli. Infect. Immun. 69:6863–6873. DOI: 10.1128/IAI.69.11.6863-6873.2001
Siegler, R.L., Obrig, T.G., Pysher, T.J., et al. 2003. Response to Shiga toxin 1 and 2 in a baboon model of hemolytic uremic syndrome. Pediatr. Nephrol. 18(2):92-96.
Sonnier, J., Karns, J., Lombard, J., et al. 2018. Prevalence of Salmonella enterica, Listeria monocytogenes, and pathogenic Escherichia coli in bulk tank milk and milk filters from US dairy operations in the National Animal Health Monitoring System Dairy 2014 study. J. Dairy Sci. 101(3):1943-1956. DOI: 10.3168/jds.2017-13546
Spinale, J.M., Ruebner, R.L., Copelovitch, L. and Kaplan, B.S. 2013. Long-term outcomes of Shiga toxin hemolytic uremic syndrome. Pediatr. Nephrol. 28:2097–2105. DOI: 10.1007/s00467-012-2383-6
Staples, M., Fang, N.X., Graham, R.M., et al. 2017. Evaluation of the SHIGA TOXIN QUIK CHEK and ImmunoCard STAT! EHEC as screening tools for the detection of Shiga toxin in fecal specimens. Diagn. Microbiol. Infect Dis. 87(2):95-99. DOI: 10.1016/j.diagmicrobio.2016.03.011
Stenutz, R., Weintraub, A., and Widmalm, G. 2006. The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol. Rev. 30:382–403.
Stevens, M.P., and Frankel, G.M. 2014. The Locus of Enterocyte Effacement and associated virulence factors of Enterohemorrhagic Escherichia coli. Microbiol Spectr. 2(4):EHEC-0007-2013. DOI: 10.1128/microbiolspec.EHEC-0007-2013
Strachan, N., Fenlon, D. and Ogden, I. 2001. Modelling the vector pathway and infection of humans in an environmental outbreak of Escherichia coli O157. FEMS Microbiol. Lett. 203:69–73.
Stritt, A., Tschumi, S., Kottanattu, L., et al. 2013. Neonatal hemolytic uremic syndrome after mother-to-child transmission of a low-pathogenic stx2b harboring Shiga toxin–producing Escherichia coli. Clin. Infect. Dis. 56:114–116. DOI: 10.3201/eid1804.111310
Strockbine, N.A., Marques, L.R., Newland, J.W., et al. 1986. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect Immun. 53(1):135-140.
Swaggerty, C.L., Grilli, E., Piva, A., et al. 2018. Chapter 8 – The first 30 years of Shiga toxin–producing Escherichia coli in cattle production: preharvest intervention strategies. In. Food and Feed Safety Systems and Analysis. Editor(s): S. C. Ricke, G. G. Atungulu, C. E. Rainwater, S. H. Park. pg. 133-151. Academic Press. DOI: 10.1016/B978-0-12-811835-1.00008-7.
Teunis, P., Takumi, K. and Shinagawa, K. 2004. Dose response for infection by Escherichia coli O157:H7 from outbreak data. Risk Anal. 24:401–407.
Teunis, P.F.M., Ogden, I.D., and Strachan, N.J.C. 2008. Hierarchical dose response of E. coli O157:H7 from human outbreaks incorporating heterogeneity in exposure. Epidemiol. Infect. 136(6):761–770. DOI: 10.1017/S0950268807008771
Thomas, A., Cheasty, T., Chart, H., and Rowe, B. 1994. Isolation of Vero cytotoxin-producing Escherichia coli serotypes O9ab:H- and O101: H-carrying VT2 variant gene sequences from a patient with haemolytic uraemic syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 13:1074–1076.
Tilden, J., Young, W., McNamara, A.M., et al. 1996. A new route of transmission for Escherichia coli: infection from dry fermented salami. Am. J. Public Health 86:1142–1145.
Todd, E.C.D., Greig, J.D., Bartleson, C.A. and Michaels, B.A. 2008. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 4. Infective doses and pathogen carriage. J. Food Prot. 71(11):2339–2373.
Tong, W., Ostroff, S., Blais, B., et al. 2015. Genomics in the land of regulatory science. Reg. Toxicol. Pharmacol. 72:102-106. DOI: 10.1016/j.yrtph.2015.03.008
Tozzoli, R., Caprioli, A. and Morabito, S. 2005. Detection of toxB, a plasmid virulence gene of Escherichia coli O157, in Enterohemorrhagic and Enteropathogenic E. coli. J. Clin. Microbiol. 43(8):4052–4056. DOI: 10.1128/JCM.43.8.4052-4056.2005
Tran, S.L., Jenkins, C., Livrelli, V., and Schüller, S. 2018. Shiga toxin 2 translocation across intestinal epithelium is linked to virulence of Shiga toxin-producing Escherichia coli in humans. Microbiology (Reading). 164(4):509-516. DOI 10.1099/mic.0.000645
Tseng, M., Fratamico, P.M., Manning, S., and Funk, J.A. 2014. Shiga toxin-producing Escherichia coli in swine: the public health perspective. An. Health Res. Rev. 8:1-13. DOI: 10.1017/S1466252313000170
Tuttle, J., Gomez, T., Doyle, M.P., Wells, J.G., Zhao, T., Tauxe, R.V., and Griffin, P.M. 1999. Lessons from a large outbreak of Escherichia coli O157: H7 infections: insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiol. Infect. 122:185–192.
Tzipori, S., Wachsmuth, I.K., Chapman, C., et al. 1986. The pathogenesis of hemorrhagic colitis caused by Escherichia coli O157:H7 in gnotobiotic piglets. J. Infect. Dis. 154:712–716.
USDA-FSIS. 2012. Shiga toxin-producing Escherichia coli in certain raw beef products. Fed. Regist. 77:31975–31981.
USDA-FSIS. 2018. Microbiology Laboratory Guidebook. 5B Detection and Isolation of non-O157 Shiga Toxin-Producing Escherichia coli (STEC) from Meat Products and Carcass and Environmental Sponges. https://www.fsis.usda.gov/wps/portal/fsis/topics/science/laboratories-and-procedures/guidebooks-and-methods/microbiology-laboratory-guidebook/microbiology-laboratory-guidebook
US CDC. 2011. Investigation update: multistate outbreak of E. coli O157:H7 infections associated with in-shell hazelnuts. Available at: www.cdc.gov/ecoli/2011/hazelnuts0157/
Vallis, E., Ramsey, A., Sidiq, S., and DuPont, H.L. 2018. Non-O157 Shiga toxin-producing Escherichia coli—A poorly appreciated enteric pathogen: Systematic review. Int. J. Infect. Dis. 76:82–87. DOI: 10.1016/j.ijid.2018.09.002
van Hoek, A.H.A.M, van Veldhuizen, J.N.J., Friesema, I., et al. 2019. Comparative genomics reveals a lack of evidence for pigeons as a main source of stx2f-carrying Escherichia coli causing disease in humans and the common existence of hybrid Shiga toxin-producing and enteropathogenic E. coli pathotypes. BMC Genomics. 20:271. DOI: 10.1186/s12864-019-5635-z
VTEC Workshop Report. 2010. Report on the Verotoxigenic E. coli (VTEC) Risk Identification and Risk Management Workshop, held November 1 and 2, 2010, Ottawa. (RDIMS#2705828)
Werber, D., Bielaszewska, M., Frank, C., et al. 2011. Watch out for the even eviler cousin-sorbitol-fermenting E. coli O157. Lancet. 377(9762):298-9. DOI: 10.1016/S0140-6736(11)60090-1
WHO/FAO. 2003. Hazard characterization for pathogens in food and water: guidelines. Microbiological Risk Assessment Series 3. http://www.fao.org/docrep/006/y4666e/y4666e00.htm
WHO/FAO. 2018. Shiga toxin-producing Escherichia coli (STEC) and food: attribution, characterization, and monitoring. Microbiological Risk Assessment Series 31, Report. https://www.who.int/foodsafety/publications/mra_31/en/
Wirth, T., Falush, D., Lan, R. et al. 2006. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 60 (5):1136–1151. DOI: 10.1111/j.1365-2958.2006.05172.x
Zhang, G., Chen, Y., Hu, L., et al. 2018. Survey of foodborne pathogens, aerobic plate counts, total Coliform counts, and Escherichia coli counts in leafy greens, sprouts, and melons. J. Food Prot. 81(3): 400–411 DOI: 10.4315/0362-028X.JFP-17-253
Zhou, Z., Alikhan, N-F., Mohamed, K., et al. 2019. The user's guide to comparative genomics with Enterobase. Three case studies: Micro-clades within Salmonella enterica serovar Agama, ancient and modern populations of Yersinia pestis, and core genomic diversity of all Escherichia. BioRxiv (April) 613554. DOI: 10.1101/613554
Graphs and data
Supplements*
In this section, you will find figures and graphs referenced throughout the document. A list of Supplement 1 and 2 is available upon request (alex.gill@canada.ca). Please be advised, the supplements are only available in the language in which they were collected.
Figure 1
Relationship between the genomic content of verotoxigenic Escherichia coli (VTEC) and other Escherichia coli pathotypes. AIEC, adherent-invasive. EAEC, enteroaggregative. EIEC, enteroinvasive. EPEC, enteropathogenic. ETEC, enterotoxigenic. (Figure 1 is related to the Hybrid Pathotypes section)

Descriptive Text Figure 1
Figure 1 is a Venn diagram that shows the relationship between the genome content of different groups of enteric Escherichia coli (E.coli) pathogens. The six recognised groups of enteric E. coli pathogens include, verotoxigenic E. coli (VTEC), adherent-invasive E. coli, enteroaggregative E. coli, enteroinvasive E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli. In the Venn diagram the largest set is the E. coli pan genome which is the total range of genes found in E. coli isolates. Within the pan genome there are six sets representing the genes common to the six specific E. coli pathogens. The set representing the VTEC pan genome is in the centre and the sets for the other five groups of pathogens are shown to overlap, indicating that a portion of the genes are shared.
Figure 2
Percentage of all Escherichia coli isolates reported to PHAC NESP categorised by serotype, 1999 to 2016. NM, Nonmotile. (Figure 2 is related to the Serotyping section)

Descriptive Text Figure 2
Serotype | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-O157 typed | 97 | 85 | 108 | 88 | 101 | 115 | 94 | 105 | 11 | 5 | 6 | 8 | 28 | 37 | 74 | 118 | 160 | 156 |
Untyped or Untypeable | 189 | 52 | 78 | 34 | 21 | 28 | 24 | 15 | 73 | 38 | 78 | 69 | 73 | 114 | 97 | 64 | 67 | 60 |
O157:H7 and NM | 2726 | 1831 | 1284 | 1259 | 1004 | 1085 | 775 | 1019 | 1867 | 1320 | 1058 | 405 | 481 | 486 | 472 | 458 | 379 | 415 |
O157 Atypical H | 2 | 0 | 2 | 1 | 2 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Serotype | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-O157 typed | 3.2% | 4.3% | 7.3% | 6.4% | 9.0% | 9.3% | 10.5% | 9.2% | 0.6% | 0.4% | 0.5% | 1.7% | 4.8% | 5.8% | 11.5% | 18.4% | 26.4% | 24.7% |
Untyped or Untypeable | 6.3% | 2.6% | 5.3% | 2.5% | 1.9% | 2.3% | 2.7% | 1.3% | 3.7% | 2.8% | 6.8% | 14.3% | 12.5% | 17.9% | 15.1% | 10.0% | 11.1% | 9.5% |
O157:H7 and NM | 90.4% | 93.0% | 87.2% | 91.1% | 89.0% | 88.1% | 86.5% | 89.2% | 95.7% | 96.8% | 92.6% | 84.0% | 82.6% | 76.3% | 73.4% | 71.6% | 62.5% | 65.8% |
O157 Atypical H | 0.1% | 0.0% | 0.1% | 0.1% | 0.2% | 0.2% | 0.3% | 0.3% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Figure 3
International and Canadian reports of foodborne Verotoxigenic Escherichia coli incidents with an identified food vehicle, 1982 to 2016. Data and citations in Supplement 2*.
(Figure 3 is related to the Foods Associated with VTEC illness section)

Descriptive Text Figure 3
Year of Outbreak | O157 | Non-O157 |
---|---|---|
1982 | 1 | 0 |
1983 | 1 | 0 |
1984 | 0 | 0 |
1985 | 2 | 0 |
1986 | 8 | 0 |
1987 | 5 | 0 |
1988 | 6 | 0 |
1989 | 7 | 0 |
1990 | 8 | 0 |
1991 | 16 | 0 |
1992 | 16 | 0 |
1993 | 19 | 0 |
1994 | 16 | 1 |
1995 | 17 | 2 |
1996 | 14 | 1 |
1997 | 3 | 1 |
1998 | 23 | 0 |
1999 | 35 | 1 |
2000 | 32 | 2 |
2001 | 17 | 1 |
2002 | 35 | 2 |
2003 | 18 | 0 |
2004 | 27 | 3 |
2005 | 31 | 8 |
2006 | 20 | 1 |
2007 | 33 | 7 |
2008 | 35 | 4 |
2009 | 31 | 2 |
2010 | 22 | 11 |
2011 | 28 | 9 |
2012 | 29 | 11 |
2013 | 32 | 5 |
2014 | 21 | 12 |
2015 | 17 | 8 |
2016 | 17 | 7 |
Figure 4
Canadian national incidence rate of verotoxigenic Escherichia coli (VTEC) O157, non-O157 VTEC and Non-Typed VTEC reported to NESP, 1997-2016.
(Figure 4 is related to the National Enteric Surveillance Program section)

Descriptive Text Figure 4
Year | Rate per 100,000 |
---|---|
1997 | 4.09 |
1998 | 4.85 |
1999 | 4.97 |
2000 | 9.81 |
2001 | 4.3 |
2002 | 3.96 |
2003 | 3.43 |
2004 | 3.44 |
2005 | 2.48 |
2006 | 3.31 |
2007 | 3.24 |
2008 | 2.29 |
2009 | 1.82 |
2010 | 1.6 |
2011 | 1.86 |
2012 | 1.97 |
2013 | 1.81 |
2014 | 1.82 |
2015 | 1.78 |
2016 | 2.02 |
Table 1
Incidence of Patient Outcomes from confirmed verotoxigenic Escherichia coli infections US, 1996 to 2017. https://www.cdc.gov/foodnetfast/.
(Table 1 is related to the Features of Vulnerable Populations section)
Incidence per 100,000
Age Group | Infection | Hospitalization | Death |
---|---|---|---|
<5 | 8.08 | 1.79 | 0.04 |
5-9 | 3.95 | 1.20 | 0.00 |
10-19 | 2.87 | 0.80 | 0.02 |
20-29 | 1.82 | 0.42 | 0.02 |
30-39 | 0.94 | 0.25 | 0.02 |
40-49 | 0.80 | 0.26 | 0.00 |
50-59 | 1.04 | 0.40 | 0.02 |
60-69 | 1.29 | 0.61 | 0.02 |
70+ | 1.48 | 0.87 | 0.06 |
Male | 1.90 | 0.57 | 0.01 |
Female | 2.19 | 0.66 | 0.01 |
Table 2
Virulence markers and putative virulence markers of verotoxigenic Escherichia coli.
(Table 2 is related to the Verotoxin and Other Virulence Factors sections).
The Content Of This Table Is Provisional.
Target | Confirmed Virulence Factor | Genetic Support | Encoded protein or family effector | GenBank Accession Numbers |
---|---|---|---|---|
stx1a | Yes | Chromosomal -phage | Verotoxin 1a | M19473 |
stx1c | Yes | Chromosomal -phage | Verotoxin 1c | Z36901 |
stx1d | Yes | Chromosomal -phage | Verotoxin 1d | AY170851 |
stx1e | Yes | Chromosomal -phage | Verotoxin 1e | KF926684 |
stx2a | Yes | Chromosomal -phage | Verotoxin 2a | X07865 |
stx2b | Yes | Chromosomal -phage | Verotoxin 2b | X65949 |
stx2c | Yes | Chromosomal -phage | Verotoxin 2c | M59432 |
stx2d | Yes | Chromosomal -phage | Verotoxin 2d | AF479828 |
stx2e | Yes | Chromosomal -phage | Verotoxin 2e | M21534 |
stx2f | Yes | Chromosomal -phage | Verotoxin 2f | AJ010730 |
stx2g | Yes | Chromosomal -phage | Verotoxin 2g | AY286000 |
stx2h | No | Chromosomal -phage | Verotoxin 2h | CP022279 |
stx2i | No | Chromosomal -phage | Verotoxin 2i | FN252457 |
stx2k | No | Chromosomal -phage | Verotoxin 2k | KC339670 |
stx2l | No | Chromosomal -phage | Verotoxin 2l | AM904726 |
aaiC | Yes | EAEC pAA | AaiC, secreted protein | FN554766 |
adfO | No | O-Island 57 | Adhesin | AE005174 |
aggR | Yes | EAEC Chromosome (Z32523) | Transcriptional activator | Z18751 |
astA | Yes | Plasmid and chromosome | Heat-stable enterotoxin | L11241 and HE603111 |
bfpA | No | pMAR2 plasmid (NC_011603) | Major structural subunit of bundle-forming pilus | AB247922 to AB247935 |
cdt-V | Yes | Chromosome (AJ508930) | Cytolethal distending toxin | JF461073 |
chuAa | No | Chromosome | Heme/hemoglobin receptor | AF280396 |
cif D | No | Chromosome | Deamidase | AY128535 |
ckf | No | O-Island 57 | Putative killer protein | AE005174 |
ecf1 | No | EHEC plasmid | Enzyme that enhances bacterial membrane structure | NC_007414 |
ecf2 | No | EHEC plasmid | Enzyme that enhances bacterial membrane structure | NC_007414 |
efa1 | No | O-Island 122 | EHEC factor for adherence | AF159462 |
eae | Yes | LEE PI | Intimin | – |
ehaA | No | OI-15 | Autotransporter of EHEC | AE005174 |
ehxA | No | EHEC plasmid (NC_007414) | Enterohemolysin | AF074613 |
eibG | No | aEHEC plasmid (NC_007365) | Immunoglobulin binding protein | AB255744 |
ent/espL2 | No | O-Island 122 | Microcolony formation and F-actin aggregation | AE005174 |
epeA | No | aEHEC plasmid | Serine protease autotransporter | AY258503.2; NC_007365 |
espB | No | LEE PI | LEE effector | Z21555 |
espF | No | LEE PI | LEE effector | AF116900 |
espH | No | – | Non-LEE-encoded effector | AB303061 |
espJ | No | – | Non-LEE-encoded effector | AB303061 |
espK | No | OI-50 (prophage CP-933N) | Non-LEE-encoded type III effector | AE005174 |
espM1 | No | OI-71 | Non-LEE-encoded type III effector | AE005174 |
espN | No | OI-50 (prophage CP-933N) | Non-LEE-encoded type III effector | AE005174 |
espP | No | EHEC plasmid (pO157) | Serine protease EspP | NC_002128 |
espT | No | – | RhoGEF mimic | – |
espV | No | OI-44 | AvrA family effector | AE005174 |
espZ | No | Chromosome | – | DQ138078 |
etpD | No | pO157 | Type-II effector | AF074613 |
Iha | No | O-Island 43 and O-Island 48 | Iron regulated adhesin; | AF126104 |
iha_homologue | No | O-Island 43 and O-Island 48 | Iron regulated adhesin; | AF126104 |
irp2 | No | High pathogenicity island | Iron-repressible protein 2 | CU928185 |
katP | No | EHEC plasmid (pO26) | Catalase peroxidase | GQ259888 |
lpfAO113 | No | EAEC chromosome (CU928185) | Long polar fimbrial protein | AY057066 |
lpfAO26 | No | EAEC chromosome (CU928185) | Major fimbrial subunit of LPFO26 | AB161111 |
mapR | No | – | RhoGEF mimic | CAS11490 |
nleA | No | O-Island 71 | Disruption of tight junctions and protein trafficking | AB303062 |
nleB | No | O-Island 122 | Immunmodulation | AB303062 |
nleB1 | No | – | Non-LEE encoded type III effector | FM180568 |
nleB2 | No | O-Island 36 | Non-LEE encoded type III effector | NC_013008 |
nleC | No | O-Island 36 | Non-LEE encoded type III effector | AE005174 |
nleD | No | O-Island 36 | Non-LEE encoded type III effector | AE005174 |
nleE | No | O-Island 122 | Non-LEE encoded type III effector | AP010958 |
nleF | No | O-Island 71 | Non-LEE encoded type III effector | AE005174 |
nleG | No | O-Island 71 | Ubiquitin ligase | AB303062 |
nleG2–1 | No | O-Island 71 | Ubiquitin ligase | AP010953 |
nleG2–3 | No | O-Island 57 | Ubiquitin ligase | AP010953 |
nleG5–2 | No | O-Island 57 | Ubiquitin ligase | AE005174 |
nleG6–2 | No | O-Island 57 | Ubiquitin ligase | AE005174 |
nleG9 | No | O-Island 71 | Ubiquitin ligase | AP010953 |
nleH1 | No | O-Island 36 | Non-LEE encoded type III effector | AJA24806 |
nleH2 | No | O-Island 71 | Non-LEE encoded type III effector | AJA24806 |
ompA | No | Chromosome | Outer Membrane Protein II | V00307 |
paa | No | plasmid | porcine attaching-effacing associated protein | AY547306 |
pagC | No | OI-122 | PagC-like membrane protein | AE005174 |
saa | No | pO113 | STEC autoagglunating adhesin | NC_007365 |
sab | No | Plasmid | STEC autotransporter (AT) mediating biofilm formation | NC_007365 |
subA | No | pO113 | Subtilase cytoxin | NC_007414 |
tia | No | Chromosome | toxigenic invasion loci A | JQ994271 |
tir | Yes | LEE PI | translocated intimin receptor | AF013122 |
toxB | No | pO157 | Homolog of efa1, adhesin | AF074613 |
tspE4.C2 | No | Chromosome | Esterase-lipase protein | AF222188 |
ureC | No | OI-43 and OI-48 | Urease-associtated protein | NC002655 |
ureD | No | OI-43 and OI-48 | Urease-associated protein UreD | AE005174 |
wecA | No | Chromosome | Polyisoprenyl-phosphate N-acetylhexosamine-1-phosphate transferase | – |
Table 3
The number of E. coli isolates with confirmed verotoxin status, by O-type (excluding O157), submitted for characterization between 1998 and 2012 to the National Microbiology Laboratory, Winnipeg, MB, Canada (Catford et al., 2014).
(Table 3 is related to the Serotyping section).
O-type | n | % of total of each O-type |
---|---|---|
O26 | 70 | 14.1 |
O121 | 62 | 12.4 |
O103 | 55 | 11.0 |
Rough (38) or Untypable (16) | 54 | 10.8 |
O111 | 44 | 8.8 |
O145 | 16 | 3.2 |
O117 | 11 | 2.2 |
O91 | 10 | 2.0 |
O5, O146, O165 | 9 | 1.8 |
O174 | 8 | 1.6 |
O8 | 7 | 1.4 |
O1, O113 | 6 | 1.2 |
O6, O48, O55, O118, O128 | 5 | 1.0 |
O2, O45, O69, O83, O153, O156, O177, O181 | 4 | 1.8 |
O43, O71, O76, O104, O119, O130 | 3 | 0.6 |
O28, O73, O84, O107, O110, O123, O139, O154, O179, O185 | 2 | 0.4 |
O4, O18, O21, O22, O38, O39, O40, O41, O49, O51, O52, O63, O68, O70, O75, O78, O79, O88, O98, O116, O136, O141, O171, O182, O183, O186, Inactive | 1 | 0.2 |
Rough: isolate does not express lipopolysaccharide O chain.
Untypable: antibody reactions do not conform to serotyping scheme.
Table 4
Examples of foods internationally reported as sources of exposure to verotoxigenic Escherichia coli. Data and citations in Supplement 2*.
(Table 4 is related to the Food and VTEC Exposure section).
Types | Reported Food Vehicles |
---|---|
Animal Origin | |
Meat | Beef, pork, mutton/lamb, bison, venison, chicken, kangaroo, turkey, pork pie, frankfurter, salami, deli meat, pepperoni, tartare, ham, kebab |
Dairy | Cow’s milk, Goat’s milk, cheese, ice cream, cheese curds |
Seafood | Salmon roe, tuna pâte, crab, salmon, lobster |
Plant Origin | |
Fruit and Berries | Apple cider, tomato, cantaloupe, grapes, watermelon, fruit salad, strawberries, blueberries, pear |
Herbs | Parsley, cilantro |
Leafy Greens | Iceberg lettuce, romaine lettuce, spinach, kale, cabbage, arugula, rocket |
Mushrooms | Unspecified |
Nuts | Walnuts, Hazelnuts |
Sprouts | Alfalfa, radish, fenugreek, clover, watercress, bean |
Vegetables | Cucumber, celery, leeks, potatoes, green beans, onions, sugar peas |
Complex | |
Cold Prepared | Bean dip, guacamole, salsa, potato salad, pasta salad, coleslaw, bean salad, tuna salad, seafood salad, chocolate mousse, soy nut butter, mixed salads |
Grains/Baked | Flour, brownie, cakes, cookie dough, wheat snack, pizza dough mix |
Table 5
Incidents of foodborne verotoxigenic Escherichia coli illness with an identified food vehicle, internationally and in Canada, 1982 to 2018. Data and citations in Supplement 2*.
(Table 5 is related to the Foods Associated with VTEC illness section).
Total | Canada | |||||||
---|---|---|---|---|---|---|---|---|
Origin | Number of Incidents | Percentage of Incidents | Number of Cases | Percentage of Cases | Number of Incidents | Percentage of Incidents | Number of Cases | Percentage of Cases |
Animal Origin | ||||||||
Meat | 377 | 51.3% | 7,269 | 23.6% | 142 | 75.1% | 1,683 | 56.0% |
Beef | 296 | 40.5% | 4,877 | 15.8% | 118 | 62.4% | 1,044 | 34.8% |
Bison | 2 | 0.3% | 22 | 0.1% | 0 | 0.0% | 0 | 0.0% |
Chicken | 6 | 0.8% | 173 | 0.6% | 2 | 1.1% | 38 | 1.3% |
Lamb/Mutton | 6 | 0.8% | 60 | 0.2% | 0 | 0.0% | 0 | 0.0% |
Turkey | 2 | 0.3% | 38 | 0.1% | 1 | 0.5% | 36 | 1.2% |
Venison | 7 | 1.0% | 72 | 0.2% | 0 | 0.0% | 0 | 0.0% |
Kangaroo | 1 | 0.5% | 5 | – | 0 | 0.0% | 0 | 0.0% |
Pork | 12 | 1.6% | 328 | 1.1% | 9 | 4.8% | 288 | 9.6% |
Unspecified | 43 | 5.9% | 1,694 | 5.5% | 12 | 6.3% | 277 | 9.2% |
Dairy | 97 | 13.2% | 1,385 | 4.5% | 18 | 9.5% | 229 | 7.6% |
Pasteurised/unspecified | 25 | 3.4% | 365 | 1.2% | 2 | 1.1% | 19 | 0.6% |
Raw | 72 | 9.8% | 1,020 | 3.3% | 16 | 8.5% | 210 | 7.0% |
Seafood | 7 | 1.0% | 96 | 0.3% | 1 | 0.5% | 3 | 0.1% |
Plant Origin | 137 | 18.7% | 17,694 | 57.5% | 13 | 6.9% | 661 | 22.0% |
Fruit and Berries | 30 | 4.1% | 1,551 | 5.0% | 4 | 2.1% | 166 | 5.5% |
Leafy Greens | 71 | 9.7% | 2,675 | 8.7% | 5 | 2.6% | 214 | 7.1% |
Nuts | 3 | 0.4% | 30 | 0.1% | 2 | 1.1% | 22 | 0.7% |
Sprouts | 18 | 2.5% | 1,245 | 40.4% | 1 | 0.5% | 24 | 0.8% |
Vegetables | 11 | 1.5% | 788 | 2.6% | 1 | 0.5% | 235 | 7.8% |
Herbs | 3 | 0.4% | 150 | 0.5% | 0 | 0.0% | 0 | 0.0% |
Mushrooms | 1 | 0.1% | 50 | 0.2% | 0 | 0.0% | 0 | 0.0% |
Complex | 116 | 15.8% | 4,342 | 14.1% | 15 | 7.9% | 427 | 14.2% |
Cold Prepared | 47 | 6.4% | 1,866 | 6.1% | 3 | 1.6% | 223 | 7.4% |
Grains/Baked | 10 | 1.4% | 268 | 0.9% | 3 | 1.6% | 37 | 1.2% |
Multiple | 59 | 8.0% | 2,208 | 7.2% | 9 | 4.8% | 167 | 5.6% |
International total:
- Number of incidents: 733
- Number of cases: 3,078
Canadian total:
- Number of incidents: 189
- Number of cases: 3,003
Table 6
Prevalence of verotoxigenic Escherichia coli in FoodNet retail samples, irrigation water and feedlot beef manure samples, 2014-2017 (n Positive).
(Table 6 is related to the Foods Associated with VTEC illness, FoodNet Canada and Raw Ground Beef, Pork and Veal and Precursor Materials sections).
Year | Retail Ground Beef | Retail Ground Pork | Retail Veal | Irrigation Water | Feedlot Cattle Manure |
---|---|---|---|---|---|
2014 | 296 5 (1.7%) |
23 1 (4.4%) |
ND ND |
149 41 (27.5%) |
ND ND |
2015 | 387 9 (2.3%) |
75 5 (6.7%) |
ND ND |
188 60 (31.9%) |
ND ND |
2016 | 393 5 (1.3%) |
ND ND |
ND ND |
142 41 (28.9%) |
78 8 (10.3%) |
2017 | 382 10 (2.6%) |
ND ND |
334 21 (6.3%) |
116 38 (32.8%) |
76 13 (17.1%) |
Total | 1,458 29 (2.0%) |
98 6 (6.1%) |
334 21 (6.3%) |
595 180 (30.3%) |
154 21 (13.64%) |
* Retail ground pork - Sampling: n=1/250g; Analytical unit: 25g
* Irrigation water - Sampling: n=1/1000 mL; Analytical unit: 150 mL
* Feedlot cattle manure - Sampling: n=1/110g; Analytical unit: 1
ND: Not done
Table 7
Summary of food monitoring studies for verotoxigenic Escherichia coli in Canada from April 1, 2013 to March 31, 2018.
(Table 7 is related to the Foods Associated with VTEC illness, Targeted Surveys Program, Raw Ground Beef, Pork and Veal and Precursor Materials, Ready-to-Eat Meats, Raw Milk Cheeses, Fresh Produce and Other Plant-Based Foods sections).
Food Type | Sampling Program | Lot Sampling | Analytical Unit | Origin | Target Serotype(s) | Tested | Positive | Serotypes |
---|---|---|---|---|---|---|---|---|
Raw ground pork, beef and veal | NMMP | n=5/200 g | 325 ge | Domestic | O157:H7/NM | 3,273 | 3 | O157:H7/NM |
NMMP | n=5/200 g | 325 ge | Imported | O157:H7/NM | 48 | 0 | ||
Raw ground beef precursor | NMMP | N60a | 325 g composite | Domestic | O157:H7/NM | 3,834 | 3 | O157:H7/NM |
NMMP | N60a | 325 g composite | Imported | O157:H7/NM | 5 | 0 | ||
Ready-to-eat meats | NMMP NMMP |
n=5/250 g n=5/250 g |
325 ge 325 ge |
Domestic Imported |
O157:H7/NM O157:H7/NM |
22 15 |
0 0 |
– |
Raw milk cheeses | NMMP NMMP |
n=5/200 g to 1 Kg n=5/200 g to 1 Kg |
125 gd 125 gd |
Domestic Imported |
O157:H7/NM O157:H7/NM |
247 550 |
0 0 |
– |
Fresh and fresh-cut ready-to-eat fruits and vegetables | NMMP and FSO | n=1 or 5b/ 150-250 gc | 125 gd | Domestic | O157:H7/NM | 2,617 | 0 | – |
NMMP | n=5/150 gb | 125 gd | Domestic | All | 66 | 0 | – | |
NMMP and FSO | n=1 or 5b/ 150-250 gc | 25 g for n=1 or 125 gd for n=5 | Imported | All | 4,882 | 0 | – | |
NMMP | n=5/150 g | 125 gd | Imported | All | 187 | 0 | – | |
Targeted Surveys | n=1/250 g | 25 g | Both | O157:H7/NM | 28,715 | 0 | – | |
Targeted Surveys | n=1/250 g | 25 g | Both | All | 1,251 | 6 | all non-O157 | |
Nuts and nut butters | Targeted Surveys (2013-2014) | n=1/250 g | 25 g | Both | O157:H7/NM | 3,972 | 0 | – |
Dried sprouted seeds | Targeted Surveys (1 year) | n=1/250 g | 25 g | Both | O157:H7/NM | 322 | 0 | – |
Targeted Surveys (Multi year) | n=1/250 g | 25 g | Both | All | 1,028 | 4 | all non-O157 | |
Unpasteurized juices and ciders | Targeted Surveys (2016-2017) | n=1/250 ml | 25 g | Both | O157:H7/NM | 1,133 | 0 | – |
- N60: thin slices of approximately 50 cm2 are collected from the surface of 60 pieces of precursor materials.
- NMMP and FSO samples collected by CFIA inspectors at domestic establishments and importers consisted of 5 subunits. FSO and Targeted Survey samples collected at retail consisted of 1 subunit.
- Institutional-sized bags of pre-products, collected by CFIA inspectors, that were destined for restaurants, hospitals or institutions, could be less than five (5) units as long as the total weight is at least 1000 g. For whole large fruits, such as cantaloupes, melons & papayas, a single fruit is sampled for each test.
- 5 x 25 g composite
- 5 x 65 g composite
Table 8
Incidents of foodborne verotoxigenic Escherichia coli reported internationally, fifteen largest outbreaks by number of cases. Data and citations in Supplement 2*.
(Table 8 is related to the Food Preparation Practices Associated with VTEC Illness section).
Location | Year | Serotype | Cases | Deaths | Vehicle |
---|---|---|---|---|---|
Japan | 1996 | O157:H7 | 8,355 | NA | Radish sprouts |
Germany | 2011 | O104:H4 | 3,816 | 54 | Fenugreek sprouts |
USA | 2000 | O157:H7 | 736 | 1 | Watermelon |
UK | 1996 | O157:H7 | 512 | 17 | Various cooked meats |
USA | 1992 | O157:H7 | 477 | 3 | Hamburger |
USA | 2008 | O111:NM | 341 | 1 | Restaurant meals |
USA | 1999 | O157:H7 | 321 | 0 | Beef |
Japan | 2007 | O157:H7 | 314 | NA | Boxed meals |
Japan | 2011 | O157:H7 | 304 | 1 | Rice cakes |
UK | 2005 | O157 | 275 | 1 | Meat, cross contamination |
UK | 2010 | O157 | 252 | 1 | Raw leeks and potatoes |
USA | 2006 | O157:H7 | 238 | 5 | Spinach |
Finland | 2016 | ONT:H11 | 237 | 0 | Rocket salad |
Canada | 2008 | O157:H7 | 235 | 0 | Onion |
Japan | 1996 | O157:H7 | 215 | NA | Seafood salad |
ONT: O group not typable
Table 9
Incidents of foodborne verotoxigenic Escherichia coli reported in Canada, fifteen largest outbreaks by number of cases. Data and citations in Supplement 2*.
(Table 9 is related to the Food Preparation Practices Associated with VTEC Illness section)
Province | Year | Serotype | Cases | Deaths | Vehicle |
---|---|---|---|---|---|
Ontario | 2008 | O157:H7 | 235 | 0 | Onion |
Nova Scotia | 1998 | O157 | 182 | 0 | Salad |
Quebec | 2000 | O157:H7 | 176 | 0 | Ground Beef |
Ontario | 2008 | O157:H7 | 148 | 0 | Romaine lettuce |
Canada | 1999 | O157:H7 | 143 | 0 | Sausage |
Alberta | 2014 | O157:H7 | 119 | 0 | Pork |
Saskatchewan | 2001 | O157:H7 | 79 | 0 | Pork |
Ontario | 1985 | O157:H7 | 70 | 17 | Ham Sandwiches |
Canada/USA | 1996 | O157:H7 | 70 | 1 | Apple juice, unpasteurized |
Ontario | 2003 | O157:H7 | 61 | 0 | Haggis |
Manitoba | 2006 | O157 | 57 | 0 | Hamburger |
Alberta | 2004 | O157:H7 | 51 | 0 | Beef donair |
Ontario | 1986 | O157:H7 | 47 | 0 | Raw milk |
Canada | 2007 | O157:H7 | 46 | 1 | Ground Beef |
Table 10
Levels of verotoxigenic Escherichia coli reported in outbreak associated foods.
(Table 10 is related to the Levels of VTEC in Outbreak-Associated Foods section).
Food | Serotype | Level | Citation |
---|---|---|---|
Fermented Sausage | O157:H7 | 0.4 CFU/g | Tilden et al., 1996 |
Beef patties | O157:H7 | <13.7 to 675 CFU/45g | Tuttle et al., 1999 |
Raw milk cheese | O157:H7 | 5 to 10 CFU/g | Strachan et al., 2001 |
Seafood sauce | O157:H7 | 0.11 CFU/g | Teunis et al., 2004 |
Beef patties | O157:H7 | 1.45 MPN/g | Hara-Kudo and Takatori, 2011 |
Beef | O157:H7 | 23 MPN/g | Hara-Kudo and Takatori, 2011 |
Raw milk cheese | O157:H7 | 0.37 to 0.95 MPN/100g | Gill and Oudit 2015 |
Beef patties | O157:H7 | 2.2 MPN/100g | Gill and Huszczynski, 2016 |
Minced meat cutlets (beef, pork, onions, and eggs) | O157:H7 | 2.3 to 110 MPN/g | Furukawa et al. 2018 |
Fermented sausage | O111:H- | 0.1 CFU/g | Paton et al., 1996 |
Ice cream | O26:H11 O145:H28 |
0.03 MPN/g 2.4 MPN/g |
Buvens et al., 2011 |
Wheat flour | O121:H19 | 0.17 to 0.43 MPN/100g | Gill et al., 2019a |
CFU: colony forming units
MPN: most probable number
Table 11
Serotypes of verotoxigenic Escherichia coli isolated from FoodNet retail samples, irrigation water and feedlot beef manure samples, 2014-2017.
(Table 11 is related to the FoodNetCanada section).
Retail Ground Beef | Retail Ground Pork | Retail Veal | Irrigation Water | Feedlot Beef Manure |
---|---|---|---|---|
All sites | All sites | All sites | SS2-a, SS3-a | SS3-a |
O?:H21, O5:NM, O6:H34, O25, O26:H11, O34:H32, O39:H21, O41, O46:H38, O76:H19, O76:NM, O91:H21, O103:H2, O113:H21, O117:H2, O136:H12, O141AC:H2, O146:H8, O157:H7, O168:H8, O171:H2, O177:NM, untyped | O2:NM, O8, O8:H19, O100:NM, O103:H2, O121:H10, O145:NM, O155:H20, O157:H16, O157:H7, O163:H19, O163:NM, untyped | O?:H5, O2:H29, O8:H19, O55:H12, O91:NM, O109:H5, O111:NM, O113:NM, O118:H16, O132:NM, O157:H7, O160:H12, O174:H21, O185:H7 | O2, O3, O4, O5, O6, O7, O8, O11, O22, O26, O34, O36, O39, O41, O43, O45, O51, O54, O55, O63, O75, O76, O83, O84, O88, O91, O98, O103, O106, O109, O111, O112, O113, O114, O115, O116, O121, O126, O128, O130, O132, O136, O145, O152, O153, O157, O159, O163, O165, O166, O168, O172, O174, O177, O178, O179, O181, O182, O183, O185, O187, O188, Untyped | O2, O76, O88, O104, O109, O132, O145, O157, O163, O168, O171 |
Table 12
Government of Canada documents providing guidance on verotoxigenic Escherichia coli in foods.
(Table 12 is related to the Meat and Fresh Produce sections).