Alberta Health Services. 2018. E. coli outbreak linked to certain pork products in Alberta declared over.

Alperi, A. and Figueras, M.J. 2010. Human isolates of Aeromonas possess Shiga toxin genes (stx1 and stx2) highly similar to the most virulent gene variants of Escherichia coli. Clin. Microbiol. Infect. 16:1563–1567. DOI: 10.1111/j.1469-0691.2010.03203.x

Ashton, P.M., Perry, E., Ellis, R., et al. 2015. Insight into Shiga toxin genes encoded by Escherichia coli O157 from whole genome sequencing. PeerJ 3 (February): e739. DOI: 10.7717/peerj.739.

Atalla, H.N., Johnson, R., McEwen, S., et al. 2000. Use of a Shiga toxin (Stx)-enzyme-linked immunosorbent assay and immunoblot for detection and isolation of Stx-producing Escherichia coli from naturally contaminated beef. J. Food Prot. 63(9):1167-1172. DOI: 10.4315/0362-028X-63.9.1167

Babenko, D., and Toleman, M. 2016. In silico comparison of different PFGE and wgMLST. Int. J. Infect. Dis. 45(April):330. DOI: 10.1016/j.ijid.2016.02.716.

Bai, X., Fu, S., Zhang, J., et al. 2018. Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype. Sci. Rep. 8(1):6756. DOI: 10.1038/s41598-018-25233-x

Bai, X., Zhang, J., Ambikan, A., et al. 2019. Molecular Characterization and Comparative Genomics of Clinical Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains in Sweden. Sci. Rep. 9:5619. DOI: 10.1038/s41598-019-42122-z

Bayliss, L., Carr, R., Edeghere, O., et al. 2016. School outbreak of Escherichia coli O157 with high levels of transmission, Staffordshire, England, February 2012. J. Pub. Health (Oxf). 38(3):e247-e253.

Beutin, L., Montenegro, M.A., Orskov, I., et al. 1989. Close association of verocytotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli. J. Clin. Microbiol. 27(11):2559–2564.

Beutin, L. and Martin, A. 2012. Outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in Germany causes a paradigm shift with regard to human pathogenicity of STEC strains. J. Food Prot. 75(2):408-418. DOI: 10.4315/0362-028X.JFP-11-452.

Bielaszewska, M., Stowe, F., Fruth, A., et al. 2009. Shiga toxin, cytolethal distending toxin, and hemolysin repertoires in clinical Escherichia coli O91 isolates. J. Clin. Microbiol. 47(7):2061-2066. DOI: 10.1128/JCM.00201-09

Blais, B., Martinez, A., Gill, A., et al. 2014. Isolation and identification of priority verotoxigenic Escherichia coli (VTEC) in meat and vegetable products (MFLP-52). In: Compendium of Analytical Methods, Vol. 3, Laboratory Procedures of Microbiological Analysis of Foods.

Blais, B.W., Tapp, K., Dixon, M. and Carrillo, C.D. 2019. Genomically informed strain-specific recovery of Shiga toxin-producing Escherichia coli during food-borne illness outbreak investigations. J. Food Prot. 82(1):39-44. DOI: 10.4315/0362-028X.JFP-18-340

Blais, B. 2017. "Waiter, there's a DNA thread in my soup!" Canadian Safety and Security Program Connect Quarterly Newsletter (Issue 12). 

Boerlin, P., McEwen, S.A., Boerlin-Petzold, F., et al. 1999. Associations between Virulence Factors of Shiga Toxin-Producing Escherichia coli and Disease in Humans. J. Clin. Microbiol. 37(3):497-503.

Boisen, N., Hansen, A.M., Melton-Celsa, A.R., et al. 2014. The presence of the pAA plasmid in the German O104:H4 Shiga toxin type 2a (Stx2a)-producing enteroaggregative Escherichia coli strain promotes the translocation of Stx2a across an epithelial cell monolayer. J. Infect. Dis. 210(12):1909-1919. DOI: 10.1093/infdis/jiu399.\

Boisen, N., Melton-Celsa, F., Scheutz, A.R., et al. 2015. Shiga toxin 2a and enteroaggregative Escherichia coli – a deadly combination. Gut Microbes. 6(4):272–278. DOI: 10.1080/19490976.2015.1054591

Brooks, J.T., Sowers, E.G., Wells, J.G., et al. 2005. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J. Infect. Dis. 192 (8):1422–1429.

Buvens, G., Possé, B., De Schrijver, et al. 2011. Virulence profiling and quantification of verocytotoxin-producing Escherichia coli O145:H28 and O26:H11 isolated during an ice cream-related hemolytic uremic syndrome outbreak. Foodborne Pathog. Dis. 8(3):421–426. DOI: 10.1089/fpd.2010.0693

Buvens, G., Gheldre, Y.D., Dediste, A., et al. 2012. Incidence and virulence determinants of verocytotoxin-producing Escherichia coli infections in the Brussels-Capital Region, Belgium, in 2008-2010. J.Clin. Microbiol. 50(4):1336–1345. DOI: 10.1128/JCM.05317-11

CAC 2013. Codex Alimentarious Commission, Principles and Guidelines for National Food Control Systems CAC/GL 82-2013.

Carrillo, C.D., Koziol, A.G., Mathews, A., et al. 2016. Comparative evaluation of genomic and laboratory approaches for determination of Shiga Toxin subtypes in Escherichia coli. J. Food Prot. 79(12):2078-2085. DOI: 10.4315/0362-028X.JFP-16-228

Carrillo, C.D., Koziol, A., Vary, N. and Blais, B.W. (2019) Applications of genomics in regulatory food safety testing in Canada, in: New Insight into Salmonella, Listeria and E. coli Infections" (M.T. Mascellino, ed.), InTech Open Science Publishers.DOI:

Catford, A., Kouamé, V., Martinez-Perez, A., Gill, A., et al. 2014. Risk Profile on non-O157 verotoxin-producing Escherichia coli in produce, beef, milk and dairy products in Canada. Int. Food Risk Analysis J. 4:32, DOI: 10.5772/59208

CDC. 2018.

CDC FoodNet 2017. Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet 2015 Surveillance Report (Final Data). Atlanta, Georgia: U.S. Department of Health and Human Services.

CDC FoodNet Fast, 2018.

CFIA, 2018.

CFIA Testing.

Chui, L., Christianson, S., Alexander, D.C., et al. 2018. CPHLN recommendations for the laboratory detection of Shiga toxin-producing Escherichia coli (O157 and non-O157). Can. Commun. Dis. Rep. 44(11):304–307. DOI: 10.14745/ccdr.v44i11a06

Cointe, A., Birgy, A., Mariani-Kurkdjian, P., et al. 2018. Emerging multidrug-resistant hybrid pathotype Shiga Toxin-Producing Escherichia coli O80 and related strains of clonal complex 165, Europe. Emerg. Infect. Dis. 24(12):2262-2269. DOI: 10.3201/eid2412.180272

Colello, R., Vélez, M.V., González, J., et al. 2018. First report of the distribution of Locus of Adhesion and Autoaggregation (LAA) pathogenicity island in LEE-negative Shiga toxin-producing Escherichia coli isolates from Argentina. Microb. Pathog. 123:259-263. DOI: 10.1016/j.micpath.2018.07.011

Cowden, J.M., Ahmed, S., Donaghy, M., and Riley, A. 2001. Epidemiological investigation of the Central Scotland outbreak of Escherichia coli O157 infection, November to December 1996. Epidemiol. Infect. 236(3):335-341 DOI: 10.1017/S0950268801005520

Crowe, S.J., Bottichio, L., Shade, L.N., et al. 2017. Shiga toxin-producing E. coli infections associated with flour. N. Engl. J. Med. 377(21): 2036-2043. DOI: 10.1056/NEJMoa1615910

Croxen, M.A., Law, R.J., Scholz, R., et. al. 2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 26(4):822-880. DOI: 10.1128/CMR.00022-13

da Silva Santos, A.C., Gomes Romeisro, F., Yukie Sassaki, L., and Rodrigues, J. 2015. Escherichia coli from Crohn's disease patient displays virulence features of enteroinvasive (EIEC), enterohemorragic (EHEC), and enteroaggregative (EAEC) pathotypes. Gut Pathog. 7(1):2 doi 10.1186/s13099-015-0050-8

Dallman, T., Smith, G.P., O'Brien, B., et al. 2012. Characterization of a verocytotoxin-producing enteroaggregative Escherichia coli serogroup O111:H21 strain associated with a household outbreak in Northern Ireland. J. Clin. Microbiol. 50(12): 4116-4119. DOI: 10.1128/JCM.02047-12

Davidson, G.R., Frelka, J.C., Yang, M., et al. 2015. Prevalence of Escherichia coli O157:H7 and Salmonella on Inshell California Walnuts. J. Food Prot. 78(8):1547-53. DOI: 10.4315/0362-028X.JFP-15-001

De Rauw, K., Detemmerman, L., Breynaert, J., and Piérard, D. 2016. Detection of Shiga toxin-producing and other diarrheagenic Escherichia coli by the BioFire FilmArray® Gastrointestinal Panel in human fecal samples. Eur. J. Clin. Microbiol. Infect. Dis. 35(9):1479-1486. DOI: 10.1007/s10096-016-2688-7

DebRoy, C., Fratamico, P. M., Yan, X., et al. 2016. Comparison of O-antigen gene clusters of all O-serogroups of Escherichia coli and proposal for adopting a new nomenclature for O-typing. PLoS ONE 11:e0147434. DOI: 10.1371/journal.pone.0147434

Donohue-Rolfe, A., Kondova, I., Oswald, S., et al. 2000. Escherichia coli O157:H7 strains that express shiga toxin (stx) 2 alone are more neurotropic for gnotobiotic piglets than are isotypes producing only stx1 or both stx1 and stx2. J. Infect. Dis. 181(5):1825–1829 DOI: 10.1086/315421

Doyle, M.P., and Schoeni, J.L. 1984. Survival and growth characteristics of Escherichia coli associated with hemorrhagic colitis. Appl. Environ. Microbiol. 48(4):855-856

EFSA, 2015. Public health risks associated with Enteroaggregative Escherichia coli (EAEC) as a food-borne pathogen . Panel on Biological Hazards. 2015. EFSA Journal. 13(12): Article UNSP 4330 DOI: 10.2903/j.efsa.2015.4330

Ekong, P.S., Sanderson, M.W., and Cernicchiaro, N. 2015. Prevalence and concentration of Escherichia coli O157 in different seasons and cattle types processed in North America: A systematic review and meta-analysis of published research. Prev. Vet. Med. 121(1-2):74-85. DOI: 10.1016/j.prevetmed.2015.06.019

Ercoli, L., Farneti, S., Ranucci, D., et al. 2015. Role of verocytotoxigenic Escherichia coli in the swine production chain. Ital. J. Food Saf. 4(2):5156. DOI: 10.4081/ijfs.2015.5156

Ethelberg, S., Olsen, K.E.P., Scheutz, F., et al. 2004. Virulence factors for hemolytic uraemic syndrome, Denmark. J. Emerg. Infect. Dis. 10(5):842–847. DOI: 10.3201/eid1005.030576

FAO/WHO STEC Expert Group. 2019. Hazard Identification and Characterization: criteria for categorizing Shiga Toxin–producing Escherichia coli on a risk basis. J. Food Prot. 82(1):7-21. DOI: 10.4315/0362-028X.JFP-18-291

Farrokh, C., Jordan, K., Auvray, F., et al. 2013. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int J Food Microbiol. 162(2): 190-212. DOI: 10.1016/j.ijfoodmicro.2012.08.008

Fasel, D., Mellmann, A., Cernela, N., et al. 2014. Hemolytic uraemic syndrome in a 65-Year-old male linked to a very unusual type of stx2e and eae-harboring O51:H49 Shiga toxin-producing Escherichia coli. J. Clin. Microbiol. 52(4):1301–1303. DOI: 10.1128/JCM.03459-13

Feng, P.C., Jinneman, K., Scheutz, F., and Monday, S.R. 2011. Specificity of PCR and serological assays in the detection of Escherichia coli Shiga toxin subtypes. Appl. Environ. Microbiol. 77(18):6699-6702. DOI: 10.1128/AEM.00370-11

FoodNet Canada.

FoodNet Canada Publications.

Frank, C., Werber, D., Cramer, J.P., et al. 2011. Epidemic profile of Shiga toxin-producing Escherichia coli O104:H4 outbreak in Germany. N. Eng. J. Med. 365(19):1771-1780. DOI:10.1056/NEJMoa1106483

Franz, E., van Hoek, A.H., Wuite, M., et al. 2015 Molecular hazard identification of non-O157 Shiga Toxin-Producing Escherichia coli (STEC). PLoS ONE 10(3): e0120353.

Fratamico, P.M., DebRoy, C., Liu, Y., et al. 2016. Advances of molecular serotyping and subtyping of Escherichia coli. Front Microbiol. 7:644. DOI: 10.3389/fmicb.2016.00644

Friedrich, A.W., Bielaszewska, M., Zhang, W.-L., et al. 2002. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J. Infect. Dis. 185(11):74–84. DOI: 10.1086/338115

Friesema, I., van der Zwaluw, K., Schuurman, T., et al. 2014. Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E. coli (STEC) infections in the Netherlands, January 2008 to December 2011. Euro Surveill. 19(17):26-32. Available online: http://

Friesema, I.H., Keijzer-Veen, M.G., Koppejan, M., et al.2015. Hemolytic uremic syndrome associated with Escherichia coli O8:H19 and Shiga toxin 2f gene. Emerg. Infect. Dis. 21(1): 168-169. DOI: 10.3201/eid2101.140515

Fuller, C.A., Pellino, C.A., Flagler, M.J., et al. 2011. Shiga toxin subtypes display dramatic differences in potency. Infect. Immun. 79(3):1329–1337. DOI:10.1128/IAI.01182-10

Furukawa, I., Suzuki, M., Masaoka, T., et al. 2018. Outbreak of Enterohemorrhagic Escherichia coli O157:H7 Infection Associated with Minced Meat Cutlets Consumption in Kanagawa, Japan. Jpn. J. Infect Dis. 71(6):436-441. doi: 10.7883/yoken.JJID.2017.495

Garg, A.X., Suri, R.S., Barrowman, N., et al. 2003. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA. 290(10):1360-1370

Garg, A.X., Salvadori, M., Moist, L.M., et al. 2009. Renal prognosis of toxigenic Escherichia coli infection. Kidney Int. 75(S112):S38-S41. DOI: 10.1038/ki.2008.617

Gaytán, M.O., Martínez-Santos, V.I., Soto, E., and González-Pedrajo, B. 2016. Type three secretion system in attaching and effacing pathogens. Front. Cell. Infect. Microbiol. 6:129. DOI: 10.3389/fcimb.2016.00129

Gill, A., Martinez-Perez, A., McIlwham, S. and B. Blais. 2012. Development of a method for the detection of verotoxin producing Escherichia coli in food. J Food Prot. 75(5):827-837. DOI: 10.4315/0362-028X.JFP-11-395

Gill, A., Huszczynski, G., Gauthier, M., and Blais, B. 2014. Evaluation of eight agar media for the isolation of Shiga Toxin–Producing Escherichia coli. J. Microbiol. Methods. 96:6-11. DOI: 10.1016/j.mimet.2013.10.022

Gill, A. and Oudit, D. 2015. Enumeration of Escherichia coli O157 in outbreak-associated Gouda cheese made with raw milk. J. Food Prot. 78(9):1733-1737. DOI: 10.4315/0362-028X.JFP-15-036

Gill, A. and Huszczynski, G. 2016. Enumeration of Escherichia coli O157:H7 in outbreak-associated beef patties. J. Food Prot. 79(7):1266-8. DOI: 10.4315/0362-028X.JFP-15-521

Gill A., Carrillo, C., Hadley, M., et al. 2019a. Bacteriological analysis of wheat flour associated with an outbreak of Shiga toxin-producing Escherichia coli O121. Food Microbiology. 82:474-481. DOI: 10.1016/

Gill, A., Tamber, S., and Yang, X. 2019b. Relative response of populations of Escherichia coli and Salmonella enterica to exposure to thermal, alkaline and acidic treatments. Int. J. Food Microbiol. 293:94–101. DOI: 10.1016/j.ijfoodmicro.2019.01.007

Gilmour, M.W., Tabor, H., Wang, G., et al. 2007a. Isolation and genetic characterization of a coinfection of non-O157 Shiga Toxin-Producing Escherichia coli. J. Clin. Microbiol. 45 (11): 3771–3773. DOI: 10.1128/JCM.01125-07.

Gilmour, M.W., Olson, A.B., Andrysiak, A.K., et al. 2007b. Sequence-based typing of genetic targets encoded outside of the O-antigen gene cluster is indicative of Shiga toxin-producing Escherichia coli serogroup lineages. J. Med. Microbiol. 56(Pt 5):620-628.

Girardeau, J.P., Bertin, Y., and Martin, C. 2009. Genomic analysis of the PAI ICL3 locus in pathogenic LEE-negative Shiga toxin-producing Escherichia coli and Citrobacter rodentium. Microbiology. 155(4):1016-1027. DOI: 10.1099/mic.0.026807-0

Gould, L.H., Mody, R.K., Ong, K.L., et al. 2013. Increased recognition of non-O157 Shiga toxin-producing Escherichia coli infections in the United States during 2000–2010: epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog. Dis. 10(5):453–460. DOI:10.1089/fpd.2012.1401

Government of Canada. 2018. National Enteric Surveillance Program Annual Summary 2016: Public Health Agency of Canada, Guelph. Available at

Grad, Y.H., Lipsitch, M., Feldgarden, M. et al. 2012. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. PNAS USA. 109(8):3065–3070. DOI: 10.1073/pnas.1121491109.

Grande, L., Michelacci, V., Bondì, R., et al. 2016. Whole-genome characterization and strain comparison of VT2f-producing Escherichia coli causing hemolytic uraemic syndrome. Emerg. Infect. Dis. 22(12):2078–2086. DOI:10.3201/eid2212.160017

Grotiuz, G., Sirok, A., Gadea, P., et al. 2006. Shiga toxin 2-producing i associated with a case of bloody diarrhea. J. Clin. Microbiol. 44(10):3838 –3841. DOI: 10.1128/JCM.00407-06

Hallewell, J., Alexander, T., Reuter, T., and Stanford, K. 2017. Limitations of immunomagnetic separation for detection of the top seven serogroups of Shiga toxin-producing Escherichia coli. J. Food Prot. 80(4):598-603. DOI: 10.4315-0362-028X.JFP-16-427.

Hara-Kudo, Y. and Takatori, K. 2011. Contamination level and ingestion dose of foodborne pathogens associated with infections. Epidemiol. Infect. 139(10):1505–1510. DOI: 10.1017/S095026881000292X.

Hatchette, T.F. and Farina, D. 2011. Infectious diarrhea: when to test and when to treat. Can. Med. Assoc. J. 183(3):339-344. DOI: 10.1503/cmaj.091495

Health Canada 2018. The Compendium of Analytical Methods. 2018; Available from:

Hebbelstrup Jensen, B., Olsen, K.E., Struve, C., et al. 2014. Epidemiology and clinical manifestations of enteroaggregative Escherichia coli. Clin. Microbiol. Rev. 27(3):614-30. DOI: 10.1128/CMR.00112-13

Hofer, E., Cernela, N. and Stephan, R. 2012. Shiga toxin subtypes associated with Shiga toxin-producing Escherichia coli strains isolated from red deer, roe deer, chamois, and ibex. Food Path. Dis. 9(9):792–795. DOI: 10.1089/fpd.2012.1156

Honish, L., Punja, N., Nunn, S., et al., 2017. Escherichia coli O157:H7 Infections Associated with Contaminated Pork Products — Alberta, Canada, July–October 2014. MMWR Morb. Mortal. Wkly. Rep. 65(52):1477-1481 DOI: 10.15585/mmwr.mm6552a5

Iguchi, A., Iyoda, S., Seto, K., et al. 2015. Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J. Clin. Microbiol. 53(8):2427–2432. DOI: 10.1128/JCM.00321-15

Ingle, D.J., Valcanis, M., Kuzevski, A., et al. 2016. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microbial Genomics 2 (7). DOI: 10.1099/mgen.0.000064.

International Standards Organisation (ISO). 2012. Microbiology of food and animal feed — Real-time polymerase chain reaction (PCR)-based method for the detection of food-borne pathogens — Horizontal method for the detection of Shiga toxin-producing Escherichia coli (STEC) and the determination of O157, O111, O26, O103 and O145 serogroups. ISO/TS 13136:2012. Available at:

Jaakkonen, A., Salmenlinna, S, Rimhanen-Finne, R., et al. 2017. Severe Outbreak of Sorbitol-Fermenting Escherichia coli O157 via Unpasteurized Milk and Farm Visits, Finland 2012. Zoonoses Public Health. 64(6):468-475. DOI: 10.1111/zph.12327.

Jang, J., Hu, H.G., Sadowsky, M.J., et al. 2017. Environmental Escherichia coli: ecology and public health implications – a review. J. App. Microbiol. 123(3):570-581. DOI: 10.1111/jam.13468

Jaureguy, F., Landraud, L., Passet, V. et al. 2008. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics 9 (1): 560. DOI: 10.1186/1471-2164-9-560.

Joensen, K.G., Scheutz, F., Lund, O., et al. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52(5):1501–1510. DOI: 10.1128/JCM.03617-13.

Joensen, K.G., Tetzschner, A.M., Iguchi, A., et al. 2015. Rapid and easy in silico serotyping of Escherichia coli using whole genome sequencing (WGS) data. J. Clin. Microbiol. 53(8):2410-2426. DOI: 10.1128/JCM.00008-15

Jolley, K.A., Bliss, C.M., Bennett, J.S., et al. 2012. Ribosomal multilocus sequence typing: Universal characterization of bacteria from domain to strain. Microbiology (Reading) 158 (Pt 4): 1005–1015. DOI: 10.1099/mic.0.055459-0

Kanayama, A., Yahata., Y., Arima, Y., et al. 2015. Enterohemorrhagic Escherichia coli outbreaks related to childcare facilities in Japan, 2010–2013. BMC Infect. Dis. 15:539. DOI: 10.1186/s12879-015-1259-3

Karmali, M.A., Mascarenhas, M., Shen, S., et al. 2003. Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemics and/or serious disease. J. Clin. Microbiol. 41:4930–4940.

Karch, H., Schubert, S., Zhang, D., et al. 1999. A genomic island, termed high-pathogenicity island, is present in certain non-O157 Shiga toxin-producing Escherichia coli clonal lineages. Infect Immun. 67(11):5994–6001.

Karmali, M. 2018. Factors in the emergence of serious human infections associated with highly pathogenic strains of shiga toxin-producing Escherichia coli. Int. J. of Med. Microbiol. 308:1067-1072.

Karpman, D. and Ståhl, A.L. 2014. Enterohemorrhagic Escherichia coli pathogenesis and the host response. Microbiol. Spectr. 2(5). DOI: 10.1128/microbiolspec.EHEC-0009-2013

Kauffman F. 1947. The serology of the coli group. J. Immunol. 57(1):71-100.

Khaitan, A., Jandhyala, D.M., Thorpe, C.M., et al. 2007. The operon encoding SubAB, a novel cytotoxin, is present in shiga toxin-producing Escherichia coli isolates from the United States. J. Clin. Microbiol. 45(4):1374-1375 DOI: 10.1128/JCM.00076-07

Kimmitt, P.T., Harwood, C.R. and Barer, M.R. 2000. Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg. Infect. Dis. 6(5):458–465.

Knowles, M., Stinson, S., Lambert, D., et al. 2016 Genomic tools for customized recovery and detection of food-borne Shiga-toxigenic Escherichia coli. J. Food Prot. 79:2066-2077. DOI: 10.4315/0362-028X.JFP-16-220

Konowalchuk, J., Speirs, J.I. and Stavric, S. 1977. Vero response to a cytotoxin of Escherichia coli. Infect. Immun. 18:775-779.

Kraft, A.L., Lacher, D.W., Shelver, W.L., et al. 2017. Comparison of immunomagnetic separation beads for detection of six non-O157 Shiga toxin-producing Escherichia coli serogroups in different matrices. Lett. Appl. Microbiol. 65:213-219.

Krüger, A. and Lucchesi, P.M. 2015. Shiga toxins and stx phages: highly diverse entities. Microbiology. 161(Pt 3):451-462. DOI: 10.1099/mic.0.000003

Kundu, D., Gill, A., Lui, C., et al. 2014. Use of low dose e-beam irradiation to reduce E. coli O157:H7, non-O157 (VTEC) E. coli and Salmonella viability on meat surfaces. Meat Sci. 96:413-418. DOI: 10.1016/j.meatsci.2013.07.034

Lacher, D.W., Gangiredla, J., Patel, I., et al., 2016. Use of the Escherichia coli identification microarray for characterizing the health risks of Shiga toxin-producing Escherichia coli isolated from foods. J. Food Prot. 79(10):1656–1662. DOI: 10.4315/0362-028X.JFP-16-176

Lambert, D., Carrillo, C.D., Koziol, A., et al., 2015. GeneSippr: a Rapid Whole-Genome Approach for the Identification and Characterization of Foodborne Pathogens Such as Priority Shiga Toxigenic Escherichia coli. PLOS One 10(4): e0122928. DOI: 10.1371/journal.pone.0122928

Lambert, D., Pightling, A., Griffiths, E., et al. 2017. Baseline practices for the application of genomic data supporting regulatory food safety. J. AOAC Int. 100:1-11.

Le, K.K., Whiteside, M.D., Hopkins, J.E. et al. 2018. Spfy: An integrated graph database for real-time prediction of bacterial phenotypes and downstream comparative analyses. Database 2018 (January). DOI: 10.1093/database/bay086.

LeClerc, J.E., Li, B., Payne W.L., and Cebula, T.A. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens." Science 274 (5290): 1208–1211. DOI: 10.1126/science.274.5290.1208.

Leonard, S.R., Mammel, M.K., Rasko, D.A., and Lacher, D.W. 2016. Hybrid Shiga toxin-producing and enterotoxigenic Escherichia sp. cryptic lineage 1 strain 7v harbors a hybrid plasmid. Appl. Environ. Microbiol. 82(14):4309-4319. DOI: 10.1128/AEM.01129-16

Levine, M.M. 1987. Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J. Infect. Dis. 155:377–389.

Lienemann, T., Salo, E., Rimhanen-Finne, R., et al. 2012. Shiga toxin–producing Escherichia coli serotype O78:H(-) in family, Finland, 2009. Emerg. Infect. Dis. 18:577–581. DOI: 10.3201/eid1804.111310

Liu, Y., Gill, A., McMullen, L., and Gänzle. 2015. Variation in heat and pressure resistance of verotoxigenic and nontoxigenic Escherichia coli. J. Food Prot. 78(1):111–120. DOI: 10.4315/0362-028X.JFP-14-267

Low, A.J., Koziol, A.G., Manninger, P., et al. 2019. ConFindr: Rapid detection of intraspecies and cross-species contamination in bacterial whole-genome sequence data. Peer. J. Preprints.

Maiden, M.C.J., van Rensburg, M.J.J., Bray, J.E. et al. 2013. MLST revisited: The gene-by-gene approach to bacterial genomics. Nat. Rev. Microbiol. 11(10): 728–736. DOI: 10.1038/nrmicro3093.

March, S.B., and Ratnam, S. 1986. Sorbitol-MacConkey medium for detection of Escherichia coli O157:H7 associated with hemorrhagic colitis. J. Clin. Microbiol. 23:869-872.

Marejková, M., Bláhová, K., Janda, J., et al. 2013. Enterohemorrhagic Escherichia coli as causes of hemolytic uraemic syndrome in the Czech Republic. PLOSOne. 8(9): e73927. DOI: 10.1371/journal.pone.0073927

Mellmann, A., Bielaszewska, M., Köck, R.A., et al. 2008. Analysis of collection of hemolytic uraemic syndrome-associated enterohemorrhagic Escherichia coli. Emerg. Infect. Dis. 14(8):1287–1290. DOI: 10.3201/eid1408.071082

Melton-Celsa, A.R. 2014. Shiga toxin (Stx) classification, structure, and function. Microbiol. Spectrum. 2(3): EHEC-20024-2013

Meng, Q., Bai, X., Zhao, A. et al. 2014. Characterization of Shiga toxin-producing Escherichia coli isolated from healthy pigs in China. BMC Microbiol. 14:5. DOI: 10.1186/1471-2180-14-5

Michelacci, V., Tozzoli, R., Caprioli, A., et al. 2013. A new pathogenicity island carrying an allelic variant of the Subtilase cytotoxin is common among Shiga toxin producing Escherichia coli of human and ovine origin. Clin. Microbiol. Infect. 19:E149–E156. DOI: 10.1111/1469-0691.12122

Michelacci, V., Maugliani, A., Tozzoli, R., et al. 2018. Characterization of a novel plasmid encoding F4-like fimbriae present in a Shiga-toxin producing enterotoxigenic Escherichia coli isolated during the investigation on a case of hemolytic-uremic syndrome. Int. J. Med. Microbiol. 308(7):947-955. DOI: 10.1016/j.ijmm.2018.07.002

Michino, H., Araki, K., Minami, S., et al. 1999. Massive Outbreak of Escherichia coli O157: H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am. J. Epidemiol. 150(8):787-796 DOI: 10.1093/oxfordjournals.aje.a010082

Montero, D.A., Velasco, J., Del, C.F., et al. 2017. Locus of Adhesion and Autoaggregation (LAA), a pathogenicity island present in emerging Shiga Toxin-producing Escherichia coli strains. Science Report. 7:7011. DOI:10.1038/s41598-017-06999-y

Montero, D.A., Del Canto, F., Velasco, J., et al. 2019. Cumulative acquisition of pathogenicity islands has shaped virulence potential and contributed to the emergence of LEE-negative Shiga toxin-producing Escherichia coli strains, Emerg. Microb. Infect. 8(1):486-502. DOI: 10.1080/22221751.2019.1595985

Mora, A., López, C., Dhabi, G., et al. 2012. Seropathotypes, phylogroups, stx subtypes, and intimin types of wildlife carried, Shiga toxin-producing Escherichia coli strains with the same characteristics as human-pathogenic isolates. App. Environ. Microbiol. 78(8):2578–2585. DOI: 10.1128/AEM.07520-11

Morabito, S., Karch, H., Mariani-Kurkdjian, P., et al. 1998. Enteroaggregative, Shiga toxin-producing Escherichia coli O111:H2 associated with an outbreak of hemolytic-uremic syndrome. J. Clin. Microbiol. 36:840-842.

Morita-Ishihara, T., Iyoda, S., Iguchi, A., and Ohnishi, M. 2016. Secondary Shiga Toxin-Producing Escherichia coli Infection, Japan, 2010-2012. Emerg. Infect. Dis. 22(12):2181-2184. DOI: 10.3201/eid2212.160783

Morton, V., Cheng, J.M., Sharma, D., and Kearney, A. 2017. Notes from the field: an outbreak of shiga toxin producing Escherichia coli O121 infections associated with flour – Canada, 2016-2017. MMWR Morb. Mortal. Wkly. Rep. 66:705-706.

Murinda, S.E., Batson, S.D., Nguyen, L.T., et al. 2004. Phenotypic and genetic markers for serotype-specific detection of Shiga toxin-producing Escherichia coli O26 strains from North America. Foodborne Pathog. Dis. 1(2):125-35. DOI: 10.1089/153531404323143657

Nadon, C. Van Walle, I., Gerner-Smidt, P. et al. 2017. PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance. Eurosurveillance 22 (23): pii=30544. DOI: 10.2807/1560-7917.ES.2017.22.23.30544.

Naseer, U., Løbersli, I., Hindrum, M., et al. 2017. Virulence factors of Shiga toxin-producing Escherichia coli and the risk of developing haemolytic uraemic syndrome in Norway, 1992-2013. Eur. J. Clin. Microbiol. Infect. Dis. 36(9):1613-1620. DOI: 10.1007/s10096-017-2974-z

Nataro, J.P. and Kaper, J.B. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11:142–201.

National Advisory Committee on Microbiological Criteria for Foods (NACMCF). 2019. Response to questions posed by the Food and Drug administration regarding virulence factors and attributes that define foodborne Shiga toxin-producing Escherichia coli (STEC) as severe human pathogens. J. Food Prot. .10:724-767. DOI: 10.4315/0362-028X.JFP-18-479

NESP. National Enteric Surveillance Program (NESP).

NESP Reports.

Nüesch-Inderbinen, M., Morach, M., Cernela, N., et al. 2018. Serotypes and virulence profiles of Shiga toxin-producing Escherichia coli strains isolated during 2017 from human infections in Switzerland. Int. J. Med. Microbiol. 308(7):933-939. DOI: 10.1016/j.ijmm.2018.06.011

Nyholm, O., Halkilahti, J., Wiklund, G., et al. 2015 Comparative genomics and characterization of hybrid Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC) strains. PLOS ONE 10(8): e0135936. DOI: 10.1371/journal.pone.0135936

O'Brien, A.D., and La Veck, G.F. 1983. Purification and characterization of a Shigella dysenteria 1-like toxin produced by Escherichia coli. Infect. Immun. 40:675–683.

Oliver, S.P., Jayarao, B.M., and Almeida, R.A. 2005. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog. Dis. 2(2):115–129. DOI: 10.1089/fpd.2005.2.115

Ooka, T., Seto, K., Kawano, K., et al. 2012. Clinical significance of Escherichia albertii. Emerg. Infect. Dis. 18:488 –492. DOI: 10.3201/eid1803.111401

Ørskov, I., Ørskov, F., Jann, B., and Jann, K. 1977. Serology, chemistry, and genetics of O and K antigens of Escherichia coli. Bacteriol. Rev. 41:667–710.

Ostroff, S.M., Tarr, P.I., Neill, M.A., et al. 1989. Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J. Infect. Dis. 160:994–998.

Paton, A.W. and Paton, J.C. 1996. Enterobacter cloacae producing a Shiga-like toxin II-related cytotoxin associated with a case of hemolytic-uremic syndrome. J. Clin. Microbiol. 34:463–465.

Paton, A.W., Ratcliff, R.M., Doyle, R.M., et al. 1996. Molecular microbiological investigation of an outbreak of hemolytic-uremic syndrome caused by dry fermented sausage contaminated with Shiga-like toxin-producing Escherichia coli. J. Clin. Microbiol. 34(7):1622-1627.

Paton, A.W., Srimanote, P., Woodrow, M.C. and Paton, J.C. 2001. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect. Immun. 69(11):6999–7009. DOI: 10.1128/IAI.69.11.6999-7009.2001

Paton, A.W., Srimanote, P., Talbot, U.M., et al. 2004. A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J. Exp. Med. 200(1):35-46.

Persad, A.K. and LeJeune, J.T. 2014. Animal Reservoirs of Shiga Toxin-Producing Escherichia coli. Microbiol. Spect. 2(4):EHEC-0027-2014. DOI:10.1128/microbiolspec.EHEC-0027-2014

Persson, S., Olsen, K.E.P., Ethelberg, S. and Scheutz, F. 2007. Subtyping method for Escherichia coli Shiga toxin (Verocytotoxin) 2 variants and correlations to clinical manifestations. J. Clin. Microbiol. 45(6):2020–2024. DOI: 10.1128/JCM.02591-06

Petkau, A., Mabon, P., Sieffert, C., et al. 2017. SNVPhyl: A single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology. Microbial Genomics 3 (6): e000116. DOI: 10.1099/mgen.0.000116.

Pollari, F., Christidis, T., Pintar, K.D.M., et al. 2017. Evidence for the benefits of food chain interventions on E. coli O157:H7/NM prevalence in retail ground beef and human disease incidence: A success story. Can. J. of Pub. Health. 108(1):e71–e78 DOI: 10.17269/CJPH.108.5655

Prager, R., Fruth, A., Busch, U. and Tietze, E. 2011. Comparative analysis of virulence genes, genetic diversity and phylogeny of Shiga toxin 2g and heat-stable enterotoxin STIa encoding Escherichia coli isolates from humans, animals, and environmental sources. Int. J. Med. Microbiol. 301(3):181–191. DOI: 10.1016/j.ijmm.2010.06.003

Prager, R., Lang, C., Aurass, P., et al. 2014. Two novel EHEC/EAEC hybrid strains isolated from human infections. PLOS ONE 9(4): e95379. DOI: 10.1371/journal.pone.0095379

Probert, W.S., McQuaid, C., and Schrader, K. 2014. Isolation and identification of an Enterobacter cloacae strain producing a novel subtype of Shiga toxin type 1. J. Clin. Microbiol. 52(7):2346-2351. DOI: 10.1128/JCM.00338-14


Rasko, D.A., Webster, D.R., Sahl, J.W., et al. 2011. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. New Engl. J. Med. 365(8):709-717.

Read, S.C., Gyles, C.L., Clarke, R.C., et al. 1990. Prevalence of verocytotoxigenic Escherichia coli in ground beef, pork, and chicken in southwestern Ontario. Epidem. Infect. 105:11–20.

Ribot, E.M., and Hise, K.B. 2016. Future challenges for tracking foodborne diseases: PulseNet, a 20-year-old us surveillance system for foodborne diseases, is expanding both globally and technologically. EMBO Reports 17 (11): 1499–1505. DOI: 10.15252/embr.201643128.

Safe Cooking Temperatures.

Santos, A.S. and Finlay, B.B. 2015. Bringing down the host: enteropathogenic and enterohaemorrhagic Escherichia coli effector-mediated subversion of host innate immune pathways. Cell. Microbiol. 17(3):318-332.

Scavia, G., Morabito, S., Tozzoli, R., et al. 2011. Similarity of Shiga toxin–producing Escherichia coli O104:H4 strains from Italy and Germany. Emerg. Infect. Dis. 17(10):1957-1958. DOI: 10.3201/eid1710.111072

Scheutz, F., and Stockbine, NA. 2005. Genus 1. Escherichia. In: Brenner, D.J., Krieg, N.R., Staley, J.T., eds. Bergey's Manual of Systematic Bacteriology, 2nd ed, Vol 2. Michigan, Springer and Bergey's Manual Trust. pg 607–623.

Scheutz, F., Teel, L.D., Beutin, L. et al 2012. Multicenter evaluation of a sequence-based protocol for subtyping shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol. 50(9):2951-2963. DOI: 10.1128/JCM.00860-12

Scheutz F. 2014. Taxonomy meets public health: the case of Shiga toxin-producing Escherichia coli. Microbiol Spectrum 2(4):EHEC-0019-2013. DOI:10.1128/microbiolspec.EHEC-0019-2013

Schmidt, H., Montag, M., Bockemühl, J., et al. 1993. Shiga-like toxin II-related cytotoxins in Citrobacter freundii strains from humans and beef samples. Infect. Immun. 61:534 –543

Schmidt, H., Scheef, J., Morabito, S., et al. 2000. A new Shiga toxin 2 variant (stx2f) from Escherichia coli isolated from pigeons. App. Environ. Microbiol. 66(3):1205–1208. DOI: 10.1128/AEM.66.3.1205-1208.2000

Schmidt, H., Zhang, W-L., Hemmrich, U., et al. 2001. Identification and characterization of a novel genomic island integrated at selC in Locus of Enterocyte Effacement-negative, Shiga toxin-producing Escherichia coli. Infect. Immun. 69:6863–6873. DOI: 10.1128/IAI.69.11.6863-6873.2001

Siegler, R.L., Obrig, T.G., Pysher, T.J., et al. 2003. Response to Shiga toxin 1 and 2 in a baboon model of hemolytic uremic syndrome. Pediatr. Nephrol. 18(2):92-96.

Sonnier, J., Karns, J., Lombard, J., et al. 2018. Prevalence of Salmonella enterica, Listeria monocytogenes, and pathogenic Escherichia coli in bulk tank milk and milk filters from US dairy operations in the National Animal Health Monitoring System Dairy 2014 study. J. Dairy Sci. 101(3):1943-1956. DOI: 10.3168/jds.2017-13546

Spinale, J.M., Ruebner, R.L., Copelovitch, L. and Kaplan, B.S. 2013. Long-term outcomes of Shiga toxin hemolytic uremic syndrome. Pediatr. Nephrol. 28:2097–2105. DOI: 10.1007/s00467-012-2383-6

Staples, M., Fang, N.X., Graham, R.M., et al. 2017. Evaluation of the SHIGA TOXIN QUIK CHEK and ImmunoCard STAT! EHEC as screening tools for the detection of Shiga toxin in fecal specimens. Diagn. Microbiol. Infect Dis. 87(2):95-99. DOI: 10.1016/j.diagmicrobio.2016.03.011

Stenutz, R., Weintraub, A., and Widmalm, G. 2006. The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol. Rev. 30:382–403.

Stevens, M.P., and Frankel, G.M. 2014. The Locus of Enterocyte Effacement and associated virulence factors of Enterohemorrhagic Escherichia coli. Microbiol Spectr. 2(4):EHEC-0007-2013. DOI: 10.1128/microbiolspec.EHEC-0007-2013

Strachan, N., Fenlon, D. and Ogden, I. 2001. Modelling the vector pathway and infection of humans in an environmental outbreak of Escherichia coli O157. FEMS Microbiol. Lett. 203:69–73.

Stritt, A., Tschumi, S., Kottanattu, L., et al. 2013. Neonatal hemolytic uremic syndrome after mother-to-child transmission of a low-pathogenic stx2b harboring Shiga toxin–producing Escherichia coli. Clin. Infect. Dis. 56:114–116. DOI: 10.3201/eid1804.111310

Strockbine, N.A., Marques, L.R., Newland, J.W., et al. 1986. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect Immun. 53(1):135-140.

Swaggerty, C.L., Grilli, E., Piva, A., et al. 2018. Chapter 8 – The first 30 years of Shiga toxin–producing Escherichia coli in cattle production: preharvest intervention strategies. In. Food and Feed Safety Systems and Analysis. Editor(s): S. C. Ricke, G. G. Atungulu, C. E. Rainwater, S. H. Park. pg. 133-151. Academic Press. DOI: 10.1016/B978-0-12-811835-1.00008-7.

Teunis, P., Takumi, K. and Shinagawa, K. 2004. Dose response for infection by Escherichia coli O157:H7 from outbreak data. Risk Anal. 24:401–407.

Teunis, P.F.M., Ogden, I.D., and Strachan, N.J.C. 2008. Hierarchical dose response of E. coli O157:H7 from human outbreaks incorporating heterogeneity in exposure. Epidemiol. Infect. 136(6):761–770. DOI: 10.1017/S0950268807008771

Thomas, A., Cheasty, T., Chart, H., and Rowe, B. 1994. Isolation of Vero cytotoxin-producing Escherichia coli serotypes O9ab:H- and O101: H-carrying VT2 variant gene sequences from a patient with haemolytic uraemic syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 13:1074–1076.

Tilden, J., Young, W., McNamara, A.M., et al. 1996. A new route of transmission for Escherichia coli: infection from dry fermented salami. Am. J. Public Health 86:1142–1145.

Todd, E.C.D., Greig, J.D., Bartleson, C.A. and Michaels, B.A. 2008. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 4. Infective doses and pathogen carriage. J. Food Prot. 71(11):2339–2373.

Tong, W., Ostroff, S., Blais, B., et al. 2015. Genomics in the land of regulatory science. Reg. Toxicol. Pharmacol. 72:102-106. DOI: 10.1016/j.yrtph.2015.03.008

Tozzoli, R., Caprioli, A. and Morabito, S. 2005. Detection of toxB, a plasmid virulence gene of Escherichia coli O157, in Enterohemorrhagic and Enteropathogenic E. coli. J. Clin. Microbiol. 43(8):4052–4056. DOI: 10.1128/JCM.43.8.4052-4056.2005

Tran, S.L., Jenkins, C., Livrelli, V., and Schüller, S. 2018. Shiga toxin 2 translocation across intestinal epithelium is linked to virulence of Shiga toxin-producing Escherichia coli in humans. Microbiology (Reading). 164(4):509-516. DOI 10.1099/mic.0.000645

Tseng, M., Fratamico, P.M., Manning, S., and Funk, J.A. 2014. Shiga toxin-producing Escherichia coli in swine: the public health perspective. An. Health Res. Rev. 8:1-13. DOI: 10.1017/S1466252313000170

Tuttle, J., Gomez, T., Doyle, M.P., Wells, J.G., Zhao, T., Tauxe, R.V., and Griffin, P.M. 1999. Lessons from a large outbreak of Escherichia coli O157: H7 infections: insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiol. Infect. 122:185–192.

Tzipori, S., Wachsmuth, I.K., Chapman, C., et al. 1986. The pathogenesis of hemorrhagic colitis caused by Escherichia coli O157:H7 in gnotobiotic piglets. J. Infect. Dis. 154:712–716.

USDA-FSIS. 2012. Shiga toxin-producing Escherichia coli in certain raw beef products. Fed. Regist. 77:31975–31981.

USDA-FSIS. 2018. Microbiology Laboratory Guidebook. 5B Detection and Isolation of non-O157 Shiga Toxin-Producing Escherichia coli (STEC) from Meat Products and Carcass and Environmental Sponges.

US CDC. 2011. Investigation update: multistate outbreak of E. coli O157:H7 infections associated with in-shell hazelnuts. Available at:

Vallis, E., Ramsey, A., Sidiq, S., and DuPont, H.L. 2018. Non-O157 Shiga toxin-producing Escherichia coli—A poorly appreciated enteric pathogen: Systematic review. Int. J. Infect. Dis. 76:82–87. DOI: 10.1016/j.ijid.2018.09.002

van Hoek, A.H.A.M, van Veldhuizen, J.N.J., Friesema, I., et al. 2019. Comparative genomics reveals a lack of evidence for pigeons as a main source of stx2f-carrying Escherichia coli causing disease in humans and the common existence of hybrid Shiga toxin-producing and enteropathogenic E. coli pathotypes. BMC Genomics. 20:271. DOI: 10.1186/s12864-019-5635-z

VTEC Workshop Report. 2010. Report on the Verotoxigenic E. coli (VTEC) Risk Identification and Risk Management Workshop, held November 1 and 2, 2010, Ottawa. (RDIMS#2705828)

Werber, D., Bielaszewska, M., Frank, C., et al. 2011. Watch out for the even eviler cousin-sorbitol-fermenting E. coli O157. Lancet. 377(9762):298-9. DOI: 10.1016/S0140-6736(11)60090-1

WHO/FAO. 2003. Hazard characterization for pathogens in food and water: guidelines. Microbiological Risk Assessment Series 3.

WHO/FAO. 2018. Shiga toxin-producing Escherichia coli (STEC) and food: attribution, characterization, and monitoring. Microbiological Risk Assessment Series 31, Report.

Wirth, T., Falush, D., Lan, R. et al. 2006. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 60 (5):1136–1151. DOI: 10.1111/j.1365-2958.2006.05172.x

Zhang, G., Chen, Y., Hu, L., et al. 2018. Survey of foodborne pathogens, aerobic plate counts, total Coliform counts, and Escherichia coli counts in leafy greens, sprouts, and melons. J. Food Prot. 81(3): 400–411 DOI: 10.4315/0362-028X.JFP-17-253

Zhou, Z., Alikhan, N-F., Mohamed, K., et al. 2019. The user's guide to comparative genomics with Enterobase. Three case studies: Micro-clades within Salmonella enterica serovar Agama, ancient and modern populations of Yersinia pestis, and core genomic diversity of all Escherichia. BioRxiv (April) 613554. DOI: 10.1101/613554

Graphs and data

In this section, you will find figures and graphs referenced throughout the document. A list of Supplement 1 and 2 is available upon request ( Please be advised, the supplements are only available in the language in which they were collected.

Figure 1

Relationship between the genomic content of verotoxigenic Escherichia coli (VTEC) and other Escherichia coli pathotypes. AIEC, adherent-invasive. EAEC, enteroaggregative. EIEC, enteroinvasive. EPEC, enteropathogenic. ETEC, enterotoxigenic. (Figure 1 is related to the Hybrid Pathotypes section)

Relationship between the genomic content of verotoxigenic <em>Escherichia coli</em> (VTEC) and other <em>Escherichia coli</em> pathotypes.
Descriptive Text Figure 1

Figure 1 is a Venn diagram that shows the relationship between the genome content of different groups of enteric Escherichia coli (E.coli) pathogens. The six recognised groups of enteric E. coli pathogens include, verotoxigenic E. coli (VTEC), adherent-invasive E. coli, enteroaggregative E. coli, enteroinvasive E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli. In the Venn diagram the largest set is the E. coli pan genome which is the total range of genes found in E. coli isolates. Within the pan genome there are six sets representing the genes common to the six specific E. coli pathogens. The set representing the VTEC pan genome is in the centre and the sets for the other five groups of pathogens are shown to overlap, indicating that a portion of the genes are shared.

Figure 2

Percentage of all Escherichia coli isolates reported to PHAC NESP categorised by serotype, 1999 to 2016. NM, Nonmotile. (Figure 2 is related to the Serotyping section)

Percentage of all <em>Escherichia coli</em> isolates reported to PHAC NESP categorised by serotype.
Descriptive Text Figure 2
Serotype 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Non-O157 typed 97 85 108 88 101 115 94 105 11 5 6 8 28 37 74 118 160 156
Untyped or Untypeable 189 52 78 34 21 28 24 15 73 38 78 69 73 114 97 64 67 60
O157:H7 and NM 2726 1831 1284 1259 1004 1085 775 1019 1867 1320 1058 405 481 486 472 458 379 415
O157 Atypical H 2 0 2 1 2 3 3 3 0 0 0 0 0 0 0 0 0 0
Serotype 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Non-O157 typed 3.2% 4.3% 7.3% 6.4% 9.0% 9.3% 10.5% 9.2% 0.6% 0.4% 0.5% 1.7% 4.8% 5.8% 11.5% 18.4% 26.4% 24.7%
Untyped or Untypeable 6.3% 2.6% 5.3% 2.5% 1.9% 2.3% 2.7% 1.3% 3.7% 2.8% 6.8% 14.3% 12.5% 17.9% 15.1% 10.0% 11.1% 9.5%
O157:H7 and NM 90.4% 93.0% 87.2% 91.1% 89.0% 88.1% 86.5% 89.2% 95.7% 96.8% 92.6% 84.0% 82.6% 76.3% 73.4% 71.6% 62.5% 65.8%
O157 Atypical H 0.1% 0.0% 0.1% 0.1% 0.2% 0.2% 0.3% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Figure 3

International and Canadian reports of foodborne Verotoxigenic Escherichia coli incidents with an identified food vehicle, 1982 to 2016. Data and citations in Supplement 2*.
(Figure 3 is related to the Foods Associated with VTEC illness section)

International and Canadian reports of foodborne Verotoxigenic Escherichia coli incidents.
Descriptive Text Figure 3
Year of Outbreak O157 Non-O157
1982 1 0
1983 1 0
1984 0 0
1985 2 0
1986 8 0
1987 5 0
1988 6 0
1989 7 0
1990 8 0
1991 16 0
1992 16 0
1993 19 0
1994 16 1
1995 17 2
1996 14 1
1997 3 1
1998 23 0
1999 35 1
2000 32 2
2001 17 1
2002 35 2
2003 18 0
2004 27 3
2005 31 8
2006 20 1
2007 33 7
2008 35 4
2009 31 2
2010 22 11
2011 28 9
2012 29 11
2013 32 5
2014 21 12
2015 17 8
2016 17 7

Figure 4

Canadian national incidence rate of verotoxigenic Escherichia coli (VTEC) O157, non-O157 VTEC and Non-Typed VTEC reported to NESP, 1997-2016.
(Figure 4 is related to the National Enteric Surveillance Program section)

Canadian national incidence rate of verotoxigenic Escherichia coli (VTEC) O157, non-O157 VTEC and Non-Typed VTEC reported to NESP, 1997-2016.
Descriptive Text Figure 4
Year Rate per 100,000
1997 4.09
1998 4.85
1999 4.97
2000 9.81
2001 4.3
2002 3.96
2003 3.43
2004 3.44
2005 2.48
2006 3.31
2007 3.24
2008 2.29
2009 1.82
2010 1.6
2011 1.86
2012 1.97
2013 1.81
2014 1.82
2015 1.78
2016 2.02

Table 1

Incidence of Patient Outcomes from confirmed verotoxigenic Escherichia coli infections US, 1996 to 2017.

(Table 1 is related to the Features of Vulnerable Populations section)

Incidence per 100,000

Table 1
Age Group Infection Hospitalization Death
<5 8.08 1.79 0.04
5-9 3.95 1.20 0.00
10-19 2.87 0.80 0.02
20-29 1.82 0.42 0.02
30-39 0.94 0.25 0.02
40-49 0.80 0.26 0.00
50-59 1.04 0.40 0.02
60-69 1.29 0.61 0.02
70+ 1.48 0.87 0.06
Male 1.90 0.57 0.01
Female 2.19 0.66 0.01

Table 2

Virulence markers and putative virulence markers of verotoxigenic Escherichia coli.

(Table 2 is related to the Verotoxin and Other Virulence Factors sections).

The Content Of This Table Is Provisional.

Table 2
Target Confirmed Virulence Factor Genetic Support Encoded protein or family effector GenBank Accession Numbers
stx1a Yes Chromosomal -phage Verotoxin 1a M19473
stx1c Yes Chromosomal -phage Verotoxin 1c Z36901
stx1d Yes Chromosomal -phage Verotoxin 1d AY170851
stx1e Yes Chromosomal -phage Verotoxin 1e KF926684
stx2a Yes Chromosomal -phage Verotoxin 2a X07865
stx2b Yes Chromosomal -phage Verotoxin 2b X65949
stx2c Yes Chromosomal -phage Verotoxin 2c M59432
stx2d Yes Chromosomal -phage Verotoxin 2d AF479828
stx2e Yes Chromosomal -phage Verotoxin 2e M21534
stx2f Yes Chromosomal -phage Verotoxin 2f AJ010730
stx2g Yes Chromosomal -phage Verotoxin 2g AY286000
stx2h No Chromosomal -phage Verotoxin 2h CP022279
stx2i No Chromosomal -phage Verotoxin 2i FN252457
stx2k No Chromosomal -phage Verotoxin 2k KC339670
stx2l No Chromosomal -phage Verotoxin 2l AM904726
aaiC Yes EAEC pAA AaiC, secreted protein FN554766
adfO No O-Island 57 Adhesin AE005174
aggR Yes EAEC Chromosome (Z32523) Transcriptional activator Z18751
astA Yes Plasmid and chromosome Heat-stable enterotoxin L11241 and HE603111
bfpA No pMAR2 plasmid (NC_011603) Major structural subunit of bundle-forming pilus AB247922 to AB247935
cdt-V Yes Chromosome (AJ508930) Cytolethal distending toxin JF461073
chuAa No Chromosome Heme/hemoglobin receptor AF280396
cif D No Chromosome Deamidase AY128535
ckf No O-Island 57 Putative killer protein AE005174
ecf1 No EHEC plasmid Enzyme that enhances bacterial membrane structure NC_007414
ecf2 No EHEC plasmid Enzyme that enhances bacterial membrane structure NC_007414
efa1 No O-Island 122 EHEC factor for adherence AF159462
eae Yes LEE PI Intimin
ehaA No OI-15 Autotransporter of EHEC AE005174
ehxA No EHEC plasmid (NC_007414) Enterohemolysin AF074613
eibG No aEHEC plasmid (NC_007365) Immunoglobulin binding protein AB255744
ent/espL2 No O-Island 122 Microcolony formation and F-actin aggregation AE005174
epeA No aEHEC plasmid Serine protease autotransporter AY258503.2; NC_007365
espB No LEE PI LEE effector Z21555
espF No LEE PI LEE effector AF116900
espH No Non-LEE-encoded effector AB303061
espJ No Non-LEE-encoded effector AB303061
espK No OI-50 (prophage CP-933N) Non-LEE-encoded type III effector AE005174
espM1 No OI-71 Non-LEE-encoded type III effector AE005174
espN No OI-50 (prophage CP-933N) Non-LEE-encoded type III effector AE005174
espP No EHEC plasmid (pO157) Serine protease EspP NC_002128
espT No RhoGEF mimic
espV No OI-44 AvrA family effector AE005174
espZ No Chromosome DQ138078
etpD No pO157 Type-II effector AF074613
Iha No O-Island 43 and O-Island 48 Iron regulated adhesin; AF126104
iha_homologue No O-Island 43 and O-Island 48 Iron regulated adhesin; AF126104
irp2 No High pathogenicity island Iron-repressible protein 2 CU928185
katP No EHEC plasmid (pO26) Catalase peroxidase GQ259888
lpfAO113 No EAEC chromosome (CU928185) Long polar fimbrial protein AY057066
lpfAO26 No EAEC chromosome (CU928185) Major fimbrial subunit of LPFO26 AB161111
mapR No RhoGEF mimic CAS11490
nleA No O-Island 71 Disruption of tight junctions and protein trafficking AB303062
nleB No O-Island 122 Immunmodulation AB303062
nleB1 No Non-LEE encoded type III effector FM180568
nleB2 No O-Island 36 Non-LEE encoded type III effector NC_013008
nleC No O-Island 36 Non-LEE encoded type III effector AE005174
nleD No O-Island 36 Non-LEE encoded type III effector AE005174
nleE No O-Island 122 Non-LEE encoded type III effector AP010958
nleF No O-Island 71 Non-LEE encoded type III effector AE005174
nleG No O-Island 71 Ubiquitin ligase AB303062
nleG2–1 No O-Island 71 Ubiquitin ligase AP010953
nleG2–3 No O-Island 57 Ubiquitin ligase AP010953
nleG5–2 No O-Island 57 Ubiquitin ligase AE005174
nleG6–2 No O-Island 57 Ubiquitin ligase AE005174
nleG9 No O-Island 71 Ubiquitin ligase AP010953
nleH1 No O-Island 36 Non-LEE encoded type III effector AJA24806
nleH2 No O-Island 71 Non-LEE encoded type III effector AJA24806
ompA No Chromosome Outer Membrane Protein II V00307
paa No plasmid porcine attaching-effacing associated protein AY547306
pagC No OI-122 PagC-like membrane protein AE005174
saa No pO113 STEC autoagglunating adhesin NC_007365
sab No Plasmid STEC autotransporter (AT) mediating biofilm formation NC_007365
subA No pO113 Subtilase cytoxin NC_007414
tia No Chromosome toxigenic invasion loci A JQ994271
tir Yes LEE PI translocated intimin receptor AF013122
toxB No pO157 Homolog of efa1, adhesin AF074613
tspE4.C2 No Chromosome Esterase-lipase protein AF222188
ureC No OI-43 and OI-48 Urease-associtated protein NC002655
ureD No OI-43 and OI-48 Urease-associated protein UreD AE005174
wecA No Chromosome Polyisoprenyl-phosphate N-acetylhexosamine-1-phosphate transferase

Table 3

The number of E. coli isolates with confirmed verotoxin status, by O-type (excluding O157), submitted for characterization between 1998 and 2012 to the National Microbiology Laboratory, Winnipeg, MB, Canada (Catford et al., 2014).

(Table 3 is related to the Serotyping section).

Table 3
O-type n % of total of each O-type
O26 70 14.1
O121 62 12.4
O103 55 11.0
Rough (38) or Untypable (16) 54 10.8
O111 44 8.8
O145 16 3.2
O117 11 2.2
O91 10 2.0
O5, O146, O165 9 1.8
O174 8 1.6
O8 7 1.4
O1, O113 6 1.2
O6, O48, O55, O118, O128 5 1.0
O2, O45, O69, O83, O153, O156, O177, O181 4 1.8
O43, O71, O76, O104, O119, O130 3 0.6
O28, O73, O84, O107, O110, O123, O139, O154, O179, O185 2 0.4
O4, O18, O21, O22, O38, O39, O40, O41, O49, O51, O52, O63, O68, O70, O75, O78, O79, O88, O98, O116, O136, O141, O171, O182, O183, O186, Inactive 1 0.2

Rough: isolate does not express lipopolysaccharide O chain.

Untypable: antibody reactions do not conform to serotyping scheme.

Table 4

Examples of foods internationally reported as sources of exposure to verotoxigenic Escherichia coli. Data and citations in Supplement 2*.

(Table 4 is related to the Food and VTEC Exposure section).

Table 4
Types Reported Food Vehicles
Animal Origin
Meat Beef, pork, mutton/lamb, bison, venison, chicken, kangaroo, turkey, pork pie, frankfurter, salami, deli meat, pepperoni, tartare, ham, kebab
Dairy Cow’s milk, Goat’s milk, cheese, ice cream, cheese curds
Seafood Salmon roe, tuna pâte, crab, salmon, lobster
Plant Origin
Fruit and Berries Apple cider, tomato, cantaloupe, grapes, watermelon, fruit salad, strawberries, blueberries, pear
Herbs Parsley, cilantro
Leafy Greens Iceberg lettuce, romaine lettuce, spinach, kale, cabbage, arugula, rocket
Mushrooms Unspecified
Nuts Walnuts, Hazelnuts
Sprouts Alfalfa, radish, fenugreek, clover, watercress, bean
Vegetables Cucumber, celery, leeks, potatoes, green beans, onions, sugar peas
Cold Prepared Bean dip, guacamole, salsa, potato salad, pasta salad, coleslaw, bean salad, tuna salad, seafood salad, chocolate mousse, soy nut butter, mixed salads
Grains/Baked Flour, brownie, cakes, cookie dough, wheat snack, pizza dough mix

Table 5

Incidents of foodborne verotoxigenic Escherichia coli illness with an identified food vehicle, internationally and in Canada, 1982 to 2018. Data and citations in Supplement 2*.

(Table 5 is related to the Foods Associated with VTEC illness section).

Table 5
  Total Canada
Origin Number of Incidents Percentage of Incidents Number of Cases Percentage of Cases Number of Incidents Percentage of Incidents Number of Cases Percentage of Cases
Animal Origin
Meat 377 51.3% 7,269 23.6% 142 75.1% 1,683 56.0%
Beef 296 40.5% 4,877 15.8% 118 62.4% 1,044 34.8%
Bison 2 0.3% 22 0.1% 0 0.0% 0 0.0%
Chicken 6 0.8% 173 0.6% 2 1.1% 38 1.3%
Lamb/Mutton 6 0.8% 60 0.2% 0 0.0% 0 0.0%
Turkey 2 0.3% 38 0.1% 1 0.5% 36 1.2%
Venison 7 1.0% 72 0.2% 0 0.0% 0 0.0%
Kangaroo 1 0.5% 5 0 0.0% 0 0.0%
Pork 12 1.6% 328 1.1% 9 4.8% 288 9.6%
Unspecified 43 5.9% 1,694 5.5% 12 6.3% 277 9.2%
Dairy 97 13.2% 1,385 4.5% 18 9.5% 229 7.6%
Pasteurised/unspecified 25 3.4% 365 1.2% 2 1.1% 19 0.6%
Raw 72 9.8% 1,020 3.3% 16 8.5% 210 7.0%
Seafood 7 1.0% 96 0.3% 1 0.5% 3 0.1%
Plant Origin 137 18.7% 17,694 57.5% 13 6.9% 661 22.0%
Fruit and Berries 30 4.1% 1,551 5.0% 4 2.1% 166 5.5%
Leafy Greens 71 9.7% 2,675 8.7% 5 2.6% 214 7.1%
Nuts 3 0.4% 30 0.1% 2 1.1% 22 0.7%
Sprouts 18 2.5% 1,245 40.4% 1 0.5% 24 0.8%
Vegetables 11 1.5% 788 2.6% 1 0.5% 235 7.8%
Herbs 3 0.4% 150 0.5% 0 0.0% 0 0.0%
Mushrooms 1 0.1% 50 0.2% 0 0.0% 0 0.0%
Complex 116 15.8% 4,342 14.1% 15 7.9% 427 14.2%
Cold Prepared 47 6.4% 1,866 6.1% 3 1.6% 223 7.4%
Grains/Baked 10 1.4% 268 0.9% 3 1.6% 37 1.2%
Multiple 59 8.0% 2,208 7.2% 9 4.8% 167 5.6%

International total:

  • Number of incidents: 733
  • Number of cases: 3,078

Canadian total:

  • Number of incidents: 189
  • Number of cases: 3,003

Table 6

Prevalence of verotoxigenic Escherichia coli in FoodNet retail samples, irrigation water and feedlot beef manure samples, 2014-2017 (n Positive).

(Table 6 is related to the Foods Associated with VTEC illness, FoodNet Canada and Raw Ground Beef, Pork and Veal and Precursor Materials sections).

Table 6
Year Retail Ground Beef Retail Ground Pork Retail Veal Irrigation Water Feedlot Cattle Manure
2014 296
5 (1.7%)
1 (4.4%)
41 (27.5%)
2015 387
9 (2.3%)
5 (6.7%)
60 (31.9%)
2016 393
5 (1.3%)
41 (28.9%)
8 (10.3%)
2017 382
10 (2.6%)
21 (6.3%)
38 (32.8%)
13 (17.1%)
Total 1,458
29 (2.0%)
6 (6.1%)
21 (6.3%)
180 (30.3%)
21 (13.64%)

* Retail ground pork - Sampling: n=1/250g; Analytical unit: 25g

* Irrigation water - Sampling: n=1/1000 mL; Analytical unit: 150 mL

* Feedlot cattle manure - Sampling: n=1/110g; Analytical unit: 1

ND: Not done

Table 7

Summary of food monitoring studies for verotoxigenic Escherichia coli in Canada from April 1, 2013 to March 31, 2018.

(Table 7 is related to the Foods Associated with VTEC illness, Targeted Surveys Program, Raw Ground Beef, Pork and Veal and Precursor Materials, Ready-to-Eat Meats, Raw Milk Cheeses, Fresh Produce and Other Plant-Based Foods sections).

Table 7
Food Type Sampling Program Lot Sampling Analytical Unit Origin Target Serotype(s) Tested Positive Serotypes
Raw ground pork, beef and veal NMMP n=5/200 g 325 ge Domestic O157:H7/NM 3,273 3 O157:H7/NM
NMMP n=5/200 g 325 ge Imported O157:H7/NM 48 0  
Raw ground beef precursor NMMP N60a 325 g composite Domestic O157:H7/NM 3,834 3 O157:H7/NM
NMMP N60a 325 g composite Imported O157:H7/NM 5 0  
Ready-to-eat meats NMMP
n=5/250 g
n=5/250 g
325 ge
325 ge
Raw milk cheeses NMMP
n=5/200 g to 1 Kg
n=5/200 g to 1 Kg
125 gd
125 gd
Fresh and fresh-cut ready-to-eat fruits and vegetables NMMP and FSO n=1 or 5b/ 150-250 gc 125 gd Domestic O157:H7/NM 2,617 0
NMMP n=5/150 gb 125 gd Domestic All 66 0
NMMP and FSO n=1 or 5b/ 150-250 gc 25 g for n=1 or 125 gd for n=5 Imported All 4,882 0
NMMP n=5/150 g 125 gd Imported All 187 0
Targeted Surveys n=1/250 g 25 g Both O157:H7/NM 28,715 0
Targeted Surveys n=1/250 g 25 g Both All 1,251 6 all non-O157
Nuts and nut butters Targeted Surveys (2013-2014) n=1/250 g 25 g Both O157:H7/NM 3,972 0
Dried sprouted seeds Targeted Surveys (1 year) n=1/250 g 25 g Both O157:H7/NM 322 0
Targeted Surveys (Multi year) n=1/250 g 25 g Both All 1,028 4 all non-O157
Unpasteurized juices and ciders Targeted Surveys (2016-2017) n=1/250 ml 25 g Both O157:H7/NM 1,133 0
  1. N60: thin slices of approximately 50 cm2 are collected from the surface of 60 pieces of precursor materials.
  2. NMMP and FSO samples collected by CFIA inspectors at domestic establishments and importers consisted of 5 subunits. FSO and Targeted Survey samples collected at retail consisted of 1 subunit.
  3. Institutional-sized bags of pre-products, collected by CFIA inspectors, that were destined for restaurants, hospitals or institutions, could be less than five (5) units as long as the total weight is at least 1000 g. For whole large fruits, such as cantaloupes, melons & papayas, a single fruit is sampled for each test.
  4. 5 x 25 g composite
  5. 5 x 65 g composite

Table 8

Incidents of foodborne verotoxigenic Escherichia coli reported internationally, fifteen largest outbreaks by number of cases. Data and citations in Supplement 2*.

(Table 8 is related to the Food Preparation Practices Associated with VTEC Illness section).

Table 8
Location Year Serotype Cases Deaths Vehicle
Japan 1996 O157:H7 8,355 NA Radish sprouts
Germany 2011 O104:H4 3,816 54 Fenugreek sprouts
USA 2000 O157:H7 736 1 Watermelon
UK 1996 O157:H7 512 17 Various cooked meats
USA 1992 O157:H7 477 3 Hamburger
USA 2008 O111:NM 341 1 Restaurant meals
USA 1999 O157:H7 321 0 Beef
Japan 2007 O157:H7 314 NA Boxed meals
Japan 2011 O157:H7 304 1 Rice cakes
UK 2005 O157 275 1 Meat, cross contamination
UK 2010 O157 252 1 Raw leeks and potatoes
USA 2006 O157:H7 238 5 Spinach
Finland 2016 ONT:H11 237 0 Rocket salad
Canada 2008 O157:H7 235 0 Onion
Japan 1996 O157:H7 215 NA Seafood salad

ONT: O group not typable

Table 9

Incidents of foodborne verotoxigenic Escherichia coli reported in Canada, fifteen largest outbreaks by number of cases. Data and citations in Supplement 2*.

(Table 9 is related to the Food Preparation Practices Associated with VTEC Illness section)

Table 9
Province Year Serotype Cases Deaths Vehicle
Ontario 2008 O157:H7 235 0 Onion
Nova Scotia 1998 O157 182 0 Salad
Quebec 2000 O157:H7 176 0 Ground Beef
Ontario 2008 O157:H7 148 0 Romaine lettuce
Canada 1999 O157:H7 143 0 Sausage
Alberta 2014 O157:H7 119 0 Pork
Saskatchewan 2001 O157:H7 79 0 Pork
Ontario 1985 O157:H7 70 17 Ham Sandwiches
Canada/USA 1996 O157:H7 70 1 Apple juice, unpasteurized
Ontario 2003 O157:H7 61 0 Haggis
Manitoba 2006 O157 57 0 Hamburger
Alberta 2004 O157:H7 51 0 Beef donair
Ontario 1986 O157:H7 47 0 Raw milk
Canada 2007 O157:H7 46 1 Ground Beef

Table 10

Levels of verotoxigenic Escherichia coli reported in outbreak associated foods.

(Table 10 is related to the Levels of VTEC in Outbreak-Associated Foods section).

Table 10
Food Serotype Level Citation
Fermented Sausage O157:H7 0.4 CFU/g Tilden et al., 1996
Beef patties O157:H7 <13.7 to 675 CFU/45g Tuttle et al., 1999
Raw milk cheese O157:H7 5 to 10 CFU/g Strachan et al., 2001
Seafood sauce O157:H7 0.11 CFU/g Teunis et al., 2004
Beef patties O157:H7 1.45 MPN/g Hara-Kudo and Takatori, 2011
Beef O157:H7 23 MPN/g Hara-Kudo and Takatori, 2011
Raw milk cheese O157:H7 0.37 to 0.95 MPN/100g Gill and Oudit 2015
Beef patties O157:H7 2.2 MPN/100g Gill and Huszczynski, 2016
Minced meat cutlets (beef, pork, onions, and eggs) O157:H7 2.3 to 110 MPN/g Furukawa et al. 2018
Fermented sausage O111:H- 0.1 CFU/g Paton et al., 1996
Ice cream O26:H11
0.03 MPN/g
2.4 MPN/g
Buvens et al., 2011
Wheat flour O121:H19 0.17 to 0.43 MPN/100g Gill et al., 2019a

CFU: colony forming units

MPN: most probable number

Table 11

Serotypes of verotoxigenic Escherichia coli isolated from FoodNet retail samples, irrigation water and feedlot beef manure samples, 2014-2017.

(Table 11 is related to the FoodNetCanada section).

Table 11
Retail Ground Beef Retail Ground Pork Retail Veal Irrigation Water Feedlot Beef Manure
All sites All sites All sites SS2-a, SS3-a SS3-a
O?:H21, O5:NM, O6:H34, O25, O26:H11, O34:H32, O39:H21, O41, O46:H38, O76:H19, O76:NM, O91:H21, O103:H2, O113:H21, O117:H2, O136:H12, O141AC:H2, O146:H8, O157:H7, O168:H8, O171:H2, O177:NM, untyped O2:NM, O8, O8:H19, O100:NM, O103:H2, O121:H10, O145:NM, O155:H20, O157:H16, O157:H7, O163:H19, O163:NM, untyped O?:H5, O2:H29, O8:H19, O55:H12, O91:NM, O109:H5, O111:NM, O113:NM, O118:H16, O132:NM, O157:H7, O160:H12, O174:H21, O185:H7 O2, O3, O4, O5, O6, O7, O8, O11, O22, O26, O34, O36, O39, O41, O43, O45, O51, O54, O55, O63, O75, O76, O83, O84, O88, O91, O98, O103, O106, O109, O111, O112, O113, O114, O115, O116, O121, O126, O128, O130, O132, O136, O145, O152, O153, O157, O159, O163, O165, O166, O168, O172, O174, O177, O178, O179, O181, O182, O183, O185, O187, O188, Untyped O2, O76, O88, O104, O109, O132, O145, O157, O163, O168, O171

Table 12

Government of Canada documents providing guidance on verotoxigenic Escherichia coli in foods.

(Table 12 is related to the Meat and Fresh Produce sections).

Table 12
Title Link
Health Canada’s Guidance Document on Escherichia coli O157:H7 and E. coli O157:NM in Raw Beef
Interim guidelines for the control of verotoxigenic Escherichia coli including E. coli O157:H7 in ready to eat fermented sausages containing beef or a beef product as an ingredient
Guidance on Mandatory Labelling for Mechanically Tenderized Beef
Management of the Risks Related to the Consumption of Donairs and Similar Products
Food and Drug Regulations- FDR- (C.R.C., c. 870), B.08.002.2 (1),_c._870/page-40.html#h-71
Managing Health Risks Associated with Unpasteurized Fruit Juice Cider Products
Policy on Managing Health Risk Associated with the Consumption of Sprouted Seeds and Beans